supplementary materials


qm2097 scheme

Acta Cryst. (2013). E69, o923    [ doi:10.1107/S1600536813013159 ]

3-Benzoyl-1-[4-(methylsulfanyl)phenyl]thiourea

R. de P. Castro, F. C. Macedo Jr, T. O. Brito, A. de Fátima and J. R. Sabino

Abstract top

The title compound, C15H14N2OS2, adopts a helix conformation. An intramolecular N-H...O hydrogen bond leads to a six-membered pseudo-ring [r.m.s. deviation = 0.0212 Å, maximum deviation = 0.033 (1) Å for the N atom bearing the benzoyl group] in the central unit. The benzene and (methylsulfanyl)benzene ring [r.m.s = 0.0028 Å and largest deviation of 0.067 (3) Å for the methylsulfanyl C atom] make dihedral angles of 31.76 (8) and 54.68 (6)°, respectively, with the pseudo-ring plane. The dihedral angle between the benzene rings is 85.71 (8)°. In the crystal, pairs of weak N-H...S interactions form inversion dimers and mediate a linear chain along [001].

Comment top

In the title compound, C15H14N2OS2, an intramolecular hydrogen bond of type N2—H2···O1 completes a nearly planar six-membered pseudo-ring involving the N2/C1/N1/C2/O1 atoms [r.m.s = 0.0212 Å and largest deviation = 0.033 (1) Å for N1]. The dihedral angle between the benzene ring [r.m.s = 0.0036 Å] and the (methylsulfanyl)benzene ring [r.m.s = 0.0028 Å and largest deviation of 0.067 (3) Å for C15] is 85.71 (8)°. The benzene ring and the (methylsulfanyl)benzene group make dihedral angles of 31.76 (8)° and 54.68 (6)°, respectively, with the plane of the pseudo-ring.

The crystal packing is stabilized by weak N1—H1···S1i [(i): -x + 1, -y + 2, -z + 2] interactions (Table 2), which lead to centrosymmetric dimer formation around the inversion center on (1/2,0,0) and arranged in a linear chain along [001]. The helix conformation of the title compound is justified by the supramolecular array.

The bond lengths and bond angles are in agreement with similar benzoylthiourea derivatives found in the CSD (Allen, 2002): 1-Benzoyl-3-(4-hydroxyphenyl)thiourea [CSD refcode:WADSAX (Al-abbasi et al., 2010)], 1-Benzoyl-3-(4-methoxyphenyl)thiourea [CSD refcode: WIRZAY (Cao et al., 1996)] and N-Benzoyl-N'-phenylthiourea [CSD refcode: HURYAU (Yamin et al., 2003)].

Related literature top

For related compounds found in CSD (Allen, 2002) see: Al-abbasi et al. (2010); Cao et al. (1996). For the structure of the unsubstituted compound, see: Yamin & Yusof (2003). For details of the synthesis, see: Zhang et al. (2001).

Experimental top

The procedure employed for synthesis of the title compound was described by Zhang et al. (2001). Benzoyl chloride (11 mmol) was added to a solution of ammonium thiocyanate (11 mmol) in anhydrous acetone (25 ml). The reaction mixture was heated under reflux for 15 minutes and then cooled to room temperature. A solution of 4-methylthiophenylamine (11 mmol) in acetone (10 ml) was added and the resulting mixture was stirred under reflux for 30 minutes. The reaction mixture was then poured into crushed ice under stirred. The solid product was filtered under and washed with deionized water and purified by recrystallization from ethanol to give fine crystals of the title compound, with an overall yield of 84%.

Spectroscopic data: 1H NMR (400 MHz, CDCl3, p.p.m.): 2.48 (s, 3H, OCH3), 7.27 (dt, J= 8,7 Hz &2,2 Hz, 2H), 7.52 (m, 2H), 7.63 (m, 3H), 7.87 (m, 2H), 9.08 (s, 1H, CONH), 12.54 (s, 1H, CSNH). 13C and DEPT-135 NMR (400 MHz, CDCl3, p.p.m.): 16.13(+) (OCH3); 124.87(+); 127.04(+); 127.68(+); 129.44(+); 131.77; 133.99(+); 134.92; 137.42; 167.14 (C=O); 178.34 (C=S). FT—IR (KBr, cm-1): 3216 ν(amide N—H), 3019 ν(thiourea N—H), 1670 ν(C=O), 1265 ν(C=S).

Refinement top

All H atoms were placed in calculated positions (C–H = 0.93 and 0.96 Å, N–H = 0.86) and treated as riding atoms [Uiso(H) = 1.2Ueq(C,N) orUiso(H) = 1.5Ueq(methyl)]

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level
[Figure 2] Fig. 2. The packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed line. Symmetry code: (i) -x + 1, -y + 2, -z + 2.
3-Benzoyl-1-[4-(methylsulfanyl)phenyl]thiourea top
Crystal data top
C15H14N2OS2Z = 2
Mr = 302.42F(000) = 316
Triclinic, P1Dx = 1.345 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9131 (2) ÅCell parameters from 7480 reflections
b = 9.5826 (3) Åθ = 5.0–54.1°
c = 13.3149 (4) ŵ = 0.35 mm1
α = 96.729 (1)°T = 308 K
β = 91.533 (1)°Prism, colourless
γ = 94.503 (1)°0.7 × 0.34 × 0.24 mm
V = 746.46 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2908 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.021
φ and ω scansθmax = 27.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 77
Tmin = 0.917, Tmax = 1.0k = 1211
11518 measured reflectionsl = 1717
3285 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.2312P]
where P = (Fo2 + 2Fc2)/3
S = 1(Δ/σ)max = 0.029
3285 reflectionsΔρmax = 0.19 e Å3
183 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (4)
Crystal data top
C15H14N2OS2γ = 94.503 (1)°
Mr = 302.42V = 746.46 (4) Å3
Triclinic, P1Z = 2
a = 5.9131 (2) ÅMo Kα radiation
b = 9.5826 (3) ŵ = 0.35 mm1
c = 13.3149 (4) ÅT = 308 K
α = 96.729 (1)°0.7 × 0.34 × 0.24 mm
β = 91.533 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3285 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
2908 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 1.0Rint = 0.021
11518 measured reflectionsθmax = 27.1°
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.19 e Å3
S = 1Δρmin = 0.22 e Å3
3285 reflectionsAbsolute structure: ?
183 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.6544 (2)0.96378 (13)0.72447 (9)0.0477 (3)
H20.60150.88750.68810.057*
S10.66478 (9)1.12397 (4)0.90198 (3)0.06291 (17)
C70.0806 (4)0.4643 (2)0.83445 (17)0.0745 (6)
H70.10070.3680.81330.089*
C40.0192 (3)0.75005 (17)0.89870 (12)0.0506 (3)
H40.00070.84620.92050.061*
C110.9002 (3)1.18452 (18)0.53854 (11)0.0519 (4)
H110.85521.21430.47760.062*
C10.5795 (2)0.98624 (14)0.81784 (10)0.0418 (3)
C20.3113 (3)0.77171 (15)0.78408 (11)0.0460 (3)
C50.1955 (3)0.6678 (2)0.93446 (15)0.0647 (5)
H50.29410.70870.98030.078*
C121.1161 (2)1.22405 (16)0.57927 (11)0.0453 (3)
C131.1798 (3)1.17840 (18)0.67070 (12)0.0518 (4)
H131.32441.20540.6990.062*
N10.4143 (2)0.88724 (12)0.84430 (9)0.0433 (3)
H10.37110.89950.90560.052*
O10.3658 (2)0.73896 (13)0.69735 (9)0.0679 (4)
C100.7507 (3)1.10043 (17)0.58862 (11)0.0509 (4)
H100.60511.07460.56110.061*
C30.1268 (2)0.68897 (15)0.83058 (11)0.0445 (3)
C141.0303 (3)1.09336 (18)0.71986 (12)0.0504 (4)
H141.07511.06240.78040.061*
C90.8147 (2)1.05463 (14)0.67869 (10)0.0428 (3)
S21.32148 (7)1.32969 (6)0.52237 (4)0.06877 (17)
C80.0945 (3)0.54539 (17)0.79760 (14)0.0604 (4)
H80.19060.50410.75080.072*
C60.2246 (3)0.5255 (2)0.90207 (17)0.0748 (6)
H60.3430.47060.92630.09*
C151.1792 (3)1.3752 (2)0.41292 (15)0.0684 (5)
H15A1.13271.29110.36840.103*
H15B1.28011.43570.37870.103*
H15C1.04821.42350.43260.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0555 (7)0.0429 (6)0.0431 (6)0.0071 (5)0.0160 (5)0.0024 (5)
S10.0905 (3)0.0470 (2)0.0462 (2)0.0230 (2)0.0246 (2)0.00146 (16)
C70.0898 (14)0.0473 (9)0.0854 (14)0.0157 (9)0.0241 (11)0.0132 (9)
C40.0487 (8)0.0492 (8)0.0547 (9)0.0025 (6)0.0078 (6)0.0100 (7)
C110.0503 (8)0.0663 (10)0.0393 (7)0.0055 (7)0.0054 (6)0.0138 (7)
C10.0477 (7)0.0374 (7)0.0416 (7)0.0016 (5)0.0110 (6)0.0095 (5)
C20.0521 (8)0.0418 (7)0.0440 (7)0.0021 (6)0.0100 (6)0.0065 (6)
C50.0528 (9)0.0740 (11)0.0698 (11)0.0033 (8)0.0211 (8)0.0161 (9)
C120.0423 (7)0.0493 (8)0.0451 (7)0.0007 (6)0.0133 (6)0.0085 (6)
C130.0373 (7)0.0671 (10)0.0525 (8)0.0004 (6)0.0061 (6)0.0148 (7)
N10.0512 (7)0.0402 (6)0.0384 (6)0.0042 (5)0.0125 (5)0.0070 (5)
O10.0822 (9)0.0649 (7)0.0496 (7)0.0246 (6)0.0248 (6)0.0069 (5)
C100.0470 (8)0.0623 (9)0.0406 (7)0.0116 (7)0.0048 (6)0.0043 (6)
C30.0480 (8)0.0426 (7)0.0433 (7)0.0032 (6)0.0057 (6)0.0107 (6)
C140.0465 (8)0.0622 (9)0.0463 (8)0.0070 (7)0.0092 (6)0.0187 (7)
C90.0471 (7)0.0409 (7)0.0403 (7)0.0000 (6)0.0151 (6)0.0041 (5)
S20.0501 (3)0.0899 (4)0.0694 (3)0.0149 (2)0.0089 (2)0.0348 (3)
C80.0725 (11)0.0450 (8)0.0630 (10)0.0055 (7)0.0204 (8)0.0063 (7)
C60.0698 (12)0.0687 (12)0.0873 (14)0.0163 (9)0.0230 (10)0.0250 (10)
C150.0701 (11)0.0769 (12)0.0640 (11)0.0050 (9)0.0201 (9)0.0291 (9)
Geometric parameters (Å, º) top
N2—C11.3303 (18)C5—H50.93
N2—C91.4331 (17)C12—C131.393 (2)
N2—H20.86C12—S21.7635 (14)
S1—C11.6643 (15)C13—C141.384 (2)
C7—C61.370 (3)C13—H130.93
C7—C81.380 (2)N1—H10.86
C7—H70.93C10—C91.378 (2)
C4—C31.381 (2)C10—H100.93
C4—C51.386 (2)C3—C81.391 (2)
C4—H40.93C14—C91.380 (2)
C11—C121.380 (2)C14—H140.93
C11—C101.386 (2)S2—C151.778 (2)
C11—H110.93C8—H80.93
C1—N11.3890 (17)C6—H60.93
C2—O11.2193 (17)C15—H15A0.96
C2—N11.3783 (18)C15—H15B0.96
C2—C31.4891 (19)C15—H15C0.96
C5—C61.377 (3)
C1—N2—C9126.20 (12)C2—N1—H1116.1
C1—N2—H2116.9C1—N1—H1116.1
C9—N2—H2116.9C9—C10—C11120.90 (14)
C6—C7—C8120.07 (17)C9—C10—H10119.5
C6—C7—H7120C11—C10—H10119.5
C8—C7—H7120C4—C3—C8119.70 (14)
C3—C4—C5119.86 (15)C4—C3—C2122.95 (13)
C3—C4—H4120.1C8—C3—C2117.22 (13)
C5—C4—H4120.1C9—C14—C13119.77 (14)
C12—C11—C10119.89 (14)C9—C14—H14120.1
C12—C11—H11120.1C13—C14—H14120.1
C10—C11—H11120.1C10—C9—C14119.61 (13)
N2—C1—N1116.19 (12)C10—C9—N2117.94 (13)
N2—C1—S1124.91 (11)C14—C9—N2122.42 (13)
N1—C1—S1118.88 (10)C12—S2—C15104.62 (8)
O1—C2—N1122.34 (13)C7—C8—C3119.92 (16)
O1—C2—C3121.47 (13)C7—C8—H8120
N1—C2—C3116.18 (12)C3—C8—H8120
C6—C5—C4119.95 (16)C7—C6—C5120.50 (16)
C6—C5—H5120C7—C6—H6119.8
C4—C5—H5120C5—C6—H6119.8
C11—C12—C13119.09 (13)S2—C15—H15A109.5
C11—C12—S2124.05 (12)S2—C15—H15B109.5
C13—C12—S2116.87 (11)H15A—C15—H15B109.5
C14—C13—C12120.74 (14)S2—C15—H15C109.5
C14—C13—H13119.6H15A—C15—H15C109.5
C12—C13—H13119.6H15B—C15—H15C109.5
C2—N1—C1127.82 (12)
C9—N2—C1—N1176.58 (13)O1—C2—C3—C830.6 (2)
C9—N2—C1—S12.0 (2)N1—C2—C3—C8150.00 (15)
C3—C4—C5—C60.0 (3)C12—C13—C14—C90.8 (2)
C10—C11—C12—C130.1 (2)C11—C10—C9—C140.2 (2)
C10—C11—C12—S2179.62 (12)C11—C10—C9—N2177.77 (14)
C11—C12—C13—C140.7 (2)C13—C14—C9—C100.4 (2)
S2—C12—C13—C14179.05 (12)C13—C14—C9—N2178.27 (13)
O1—C2—N1—C13.7 (3)C1—N2—C9—C10124.24 (17)
C3—C2—N1—C1175.71 (13)C1—N2—C9—C1457.8 (2)
N2—C1—N1—C23.1 (2)C11—C12—S2—C153.27 (17)
S1—C1—N1—C2175.56 (12)C13—C12—S2—C15177.03 (13)
C12—C11—C10—C90.4 (2)C6—C7—C8—C31.1 (3)
C5—C4—C3—C80.6 (2)C4—C3—C8—C71.2 (3)
C5—C4—C3—C2176.20 (15)C2—C3—C8—C7177.03 (17)
O1—C2—C3—C4145.13 (17)C8—C7—C6—C50.5 (4)
N1—C2—C3—C434.3 (2)C4—C5—C6—C70.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.932.6250 (16)137
N1—H1···S1i0.862.613.4358 (12)161
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.932.6250 (16)137.1
N1—H1···S1i0.862.613.4358 (12)161.3
Symmetry code: (i) x+1, y+2, z+2.
Acknowledgements top

This work includes part of the activities developed by the Network of Studies for the Development of Novel Inhibitors of Urease, being financed by CNPq (562479/2010–4) and FAPEMIG (APQ-04781–10). The authors are also grateful to CNPq (TOB) and CAPES (RPC) for providing their respective fellowships.

references
References top

Al-abbasi, A. A., Tan, S. S. & Kassim, M. B. (2010). Acta Cryst. E66, o3181.

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cao, Y., Zhao, B., Zhang, Y.-Q. & Zhang, D.-C. (1996). Acta Cryst. C52, 1772–1774.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.

Zhang, Y.-M., Wei, T.-B. & Gao, L.-M. (2001). Synth. Commun. 31, 3099–3105.