organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[3-Chloro-4-(4-chloro­phen­­oxy)phen­yl]imino­meth­yl}-4-nitro­phenol

aYeşilyurt Demir Celik Higher Vocational School, Ondokuz Mayıs University, TR-55300 Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: nevzatk@omu.edu.tr

(Received 6 March 2013; accepted 7 May 2013; online 15 May 2013)

In the title compound, C19H12Cl2N2O4, the imine bond length of 1.257 (6) Å is typical of a double bond. The dihedral angle between the para-nitro benzene ring and the central benzene ring is 12.06 (3)° and that between the central benzene and the para-chloro benzene ring is 73.81 (2)°. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked together by two pairs of C—H⋯O interactions (to the same O atom acceptor), forming inversion dimers. A short Cl⋯Cl contact [3.232 (4) Å] is observed.

Related literature

For applications of related Schiff base compounds, see: Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]). For related structures, see: Aygün et al. (1998[Aygün, M., Işik, Ş., Öcal, N., Tahir, M. N., Kaban, Ş. & Büyükgüngör, O. (1998). Acta Cryst. C54, 527-529.]); Karadayı et al. (2003[Karadayı, N., Gözüyeşil, S., Güzel, B., Kazak, C. & Büyükgüngör, O. (2003). Acta Cryst. E59, o851-o853.], 2005[Karadayı, N., Aydemir, E., Kazak, C., Kirpi, E., Tuğcu, F. T., Gümü˛ş, M. K. & Kaban, Ş. (2005). Acta Cryst. E61, o2671-o2673.], 2006[Karadayı, N., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1699-o1701.]); Faridbod et al. (2008[Faridbod, F., Ganjali, M. R., Dinarvand, R., Norouzi, P. & Riahi, S. (2008). Sensors, 8, 1645-1703.]); Raja et al. (2008[Raja, K. K., Bilal, I. M., Thambidurai, S., Rajagopal, G. & SubbiahPandi, A. (2008). Acta Cryst. E64, o2265.]); Li & Zhang (2004[Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017-m1019.]); Köysal et al. (2012[Köysal, Y., Öztürk Yildirim, S., Butcher, R. J. & Düğdü, E. (2012). Acta Cryst. E68, o2993-o2994.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12Cl2N2O4

  • Mr = 403.21

  • Triclinic, [P \overline 1]

  • a = 5.5649 (8) Å

  • b = 7.929 (1) Å

  • c = 21.778 (4) Å

  • α = 86.260 (12)°

  • β = 83.596 (12)°

  • γ = 70.739 (10)°

  • V = 901.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 296 K

  • 0.76 × 0.39 × 0.03 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.849, Tmax = 0.985

  • 10061 measured reflections

  • 3475 independent reflections

  • 1473 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.186

  • S = 1.05

  • 3475 reflections

  • 248 parameters

  • 52 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.564 (5) 145
C7—H7⋯O3i 0.93 2.51 3.321 (6) 146
C6—H6⋯O3i 0.93 2.49 3.319 (4) 148
Symmetry code: (i) -x, -y+2, -z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Schiff base derivatives are found to exhibit important pharmacological properties, such as antibacterial, antitumor and antitoxic activities (Santos et al., 2001). Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Cohen et al., 1964). In this study we report the structure of (I). The molecule structure of (I) is shown in Fig.1.

The N1=C7 bond length is 1.257 (6) Å, approximately equal to previously reported C=N double-bond lengths (Allen et al., 1987; Aygün et al., 1998; Karadayı et al., 2003; Faridbod et al., 2008). The geometric parameters in (I) are comparable with the similar reported structures (Raja et al., 2008; Li & Zhang, 2004; Karadayı et al., 2005; Karadayı et al., 2006; Köysal et al., 2012). The dihedral angles between the aromatic rings (C1—C6) and (C8—C13) is 12.06 (3)° and (C8—C13) and (C14—C19) is 73.81 (2)°.

The H atom is located on the hydroxy O atom rather than on the N atom. The molecular intramolecular O—H···N hydrogen bond result in formation of six-membered ring and generates an S(6) ring motif. The molecules in crystal are held together by two intermolecular C—H···O hydrogen bonds. (Table 1; Fig. 2).

Related literature top

For applications of related Schiff base compounds, see: Santos et al. (2001); Cohen et al. (1964). For related structures, see: Aygün et al. (1998); Karadayı et al. (2003, 2005, 2006); Faridbod et al. (2008); Raja et al. (2008); Li & Zhang (2004); Köysal et al. (2012). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The compound 2-{[3-chloro-4-(4-chlorophenoxy)phenyl]carbonoimidoyl}-4-nitrophenol was prepared by reflux a mixture of a solution containing 2-hydroxy-5-nitrobenzaldehyde(0.014 g, 0.082 mmol) and a solution containing 3-Chloro-4-(4-chlorophenoxy)aniline(0,021 g, 0.082 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 h under reflux. The crystals of suitable for 2-{[3-chloro-4-(4-chlorophenoxy)phenyl]carbonoimidoyl}-4-nitrophenol X-ray analysis were obtained from ethylalcohol by slow evaporation (yield 58%). Mp: 436–438 K. Elemental analysis: Uv-vis (CHCl3): λ=212 (A: 2,253), 242 (A: 2,186), 304 nm. (A: 1,019). IR (νmax, cm-1): 3090–3030(Ar—CH2), 2840–2940 (CH2), 2210 (CN), 1621, 1597, 1570, 1519, 1481, 1348, 1298, 1284, 1259, 1212, 1184, 1162, 1130, 1101, 1090, 1051, 1010, 976, 942, 927, 912, 870, 836, 823,780, 754, 725, 640, 598, 576, 546, 495.

Refinement top

All H atoms were placed in calculated positions and refined using a riding model, with fixed C—H distances of 0.93 Å and an O—H distance of 0.82 Å. The isotropic displacement parameters of the H atoms were fixed at 1.2Ueq (C—H) and 1.5Ueq (O—H) of their parents atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An drawing of the title compound showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are shown at the 30% probability level.
[Figure 2] Fig. 2. A view of the hydrogen-bonding network in the title compound. Hydrogen bonds are indicated by dashed line.
2-{[3-Chloro-4-(4-chlorophenoxy)phenyl]iminomethyl}-4-nitrophenol top
Crystal data top
C19H12Cl2N2O4Z = 2
Mr = 403.21F(000) = 412
Triclinic, P1Dx = 1.486 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5649 (8) ÅCell parameters from 8340 reflections
b = 7.929 (1) Åθ = 1.9–28.2°
c = 21.778 (4) ŵ = 0.39 mm1
α = 86.260 (12)°T = 296 K
β = 83.596 (12)°Plate, yellow
γ = 70.739 (10)°0.76 × 0.39 × 0.03 mm
V = 901.1 (2) Å3
Data collection top
Stoe IPDS 2
diffractometer
3475 independent reflections
Radiation source: fine-focus sealed tube1473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 66
Tmin = 0.849, Tmax = 0.985k = 99
10061 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.1371P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3475 reflectionsΔρmax = 0.20 e Å3
248 parametersΔρmin = 0.22 e Å3
52 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (3)
Crystal data top
C19H12Cl2N2O4γ = 70.739 (10)°
Mr = 403.21V = 901.1 (2) Å3
Triclinic, P1Z = 2
a = 5.5649 (8) ÅMo Kα radiation
b = 7.929 (1) ŵ = 0.39 mm1
c = 21.778 (4) ÅT = 296 K
α = 86.260 (12)°0.76 × 0.39 × 0.03 mm
β = 83.596 (12)°
Data collection top
Stoe IPDS 2
diffractometer
3475 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1473 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.985Rint = 0.076
10061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06852 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
3475 reflectionsΔρmin = 0.22 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.7962 (6)0.3765 (3)0.45465 (11)0.2198 (11)
Cl10.0539 (2)0.30360 (16)0.22683 (8)0.1373 (6)
C180.6896 (14)0.0931 (8)0.3740 (3)0.144 (2)
H180.85840.14070.35730.173*
C170.6001 (16)0.1794 (9)0.4229 (3)0.156 (2)
C190.5349 (14)0.0624 (8)0.3493 (3)0.142 (2)
H190.59980.12200.31680.171*
C160.3486 (18)0.1156 (11)0.4467 (3)0.177 (3)
H160.28600.17630.47920.213*
O30.0233 (6)1.2311 (4)0.04140 (18)0.1345 (13)
C150.1920 (16)0.0391 (11)0.4217 (3)0.161 (3)
H150.02220.08370.43790.193*
C140.2795 (15)0.1313 (9)0.3728 (3)0.135 (2)
O20.2457 (6)1.4083 (4)0.05235 (18)0.1303 (13)
N20.1826 (7)1.2896 (5)0.0236 (3)0.1123 (14)
C100.1116 (9)0.4319 (6)0.2530 (3)0.1125 (17)
C60.2397 (8)1.0768 (5)0.0639 (3)0.1007 (16)
H60.12641.02980.04870.121*
C90.1661 (8)0.5615 (5)0.2153 (3)0.1149 (17)
H90.11090.58330.17590.138*
C50.2973 (8)1.2175 (5)0.0331 (3)0.1021 (16)
O40.1060 (9)0.2799 (7)0.3499 (2)0.1582 (18)
C110.1866 (11)0.3996 (7)0.3121 (3)0.129 (2)
C40.4639 (9)1.2908 (6)0.0547 (3)0.1136 (18)
H40.50061.38630.03350.136*
C10.3481 (8)1.0065 (5)0.1168 (3)0.0988 (15)
C70.2800 (9)0.8626 (6)0.1508 (3)0.1049 (16)
H70.16470.81740.13550.126*
C80.3057 (8)0.6620 (6)0.2360 (3)0.1062 (15)
C20.5222 (9)1.0794 (6)0.1393 (3)0.1050 (15)
N10.3733 (7)0.7978 (5)0.2004 (2)0.1090 (13)
C30.5729 (9)1.2220 (7)0.1071 (3)0.1227 (19)
H30.68441.27150.12190.147*
O10.6321 (7)1.0140 (5)0.1906 (2)0.1368 (13)
H10.60070.92210.20190.205*
C130.3831 (11)0.6245 (7)0.2947 (3)0.1260 (18)
H130.47800.68870.30870.151*
C120.3265 (11)0.4975 (8)0.3331 (3)0.147 (2)
H120.38010.47650.37270.177*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.339 (3)0.1660 (17)0.1594 (17)0.100 (2)0.0038 (18)0.0157 (15)
Cl10.1270 (10)0.1025 (8)0.1993 (15)0.0557 (7)0.0076 (9)0.0410 (9)
C180.203 (6)0.128 (4)0.126 (5)0.095 (4)0.022 (4)0.023 (4)
C170.258 (7)0.142 (5)0.100 (4)0.112 (5)0.006 (5)0.019 (3)
C190.190 (6)0.125 (4)0.140 (5)0.098 (4)0.020 (4)0.021 (4)
C160.273 (9)0.182 (6)0.103 (5)0.124 (6)0.038 (5)0.013 (4)
O30.137 (2)0.103 (2)0.195 (4)0.068 (2)0.055 (2)0.010 (2)
C150.229 (7)0.175 (5)0.106 (5)0.113 (5)0.033 (5)0.025 (4)
C140.196 (6)0.123 (4)0.120 (4)0.100 (4)0.019 (5)0.037 (4)
O20.134 (3)0.0930 (19)0.184 (4)0.0598 (19)0.028 (2)0.004 (2)
N20.098 (3)0.071 (2)0.178 (4)0.037 (2)0.009 (3)0.032 (3)
C100.104 (3)0.080 (3)0.157 (5)0.032 (2)0.000 (3)0.037 (3)
C60.081 (3)0.069 (2)0.160 (5)0.030 (2)0.014 (3)0.024 (3)
C90.106 (3)0.080 (2)0.164 (5)0.031 (2)0.016 (3)0.033 (3)
C50.081 (3)0.070 (2)0.161 (5)0.027 (2)0.008 (3)0.028 (3)
O40.169 (4)0.153 (3)0.178 (4)0.095 (3)0.025 (3)0.029 (4)
C110.139 (4)0.110 (4)0.154 (5)0.065 (3)0.017 (4)0.034 (4)
C40.095 (3)0.086 (3)0.177 (5)0.048 (3)0.018 (3)0.023 (3)
C10.079 (3)0.066 (2)0.157 (5)0.026 (2)0.013 (3)0.023 (3)
C70.090 (3)0.077 (3)0.153 (5)0.027 (2)0.017 (3)0.024 (3)
C80.104 (3)0.079 (3)0.139 (5)0.032 (2)0.009 (3)0.022 (3)
C20.085 (3)0.086 (3)0.151 (5)0.031 (2)0.027 (3)0.013 (3)
N10.103 (3)0.080 (2)0.153 (4)0.037 (2)0.015 (3)0.021 (3)
C30.098 (3)0.106 (3)0.186 (6)0.057 (3)0.024 (4)0.018 (4)
O10.120 (3)0.124 (3)0.191 (4)0.063 (2)0.045 (3)0.004 (3)
C130.145 (4)0.111 (4)0.143 (5)0.066 (3)0.016 (4)0.019 (4)
C120.189 (6)0.141 (4)0.143 (5)0.094 (5)0.009 (4)0.023 (4)
Geometric parameters (Å, º) top
Cl2—C171.735 (8)C9—C81.405 (6)
Cl1—C101.737 (4)C9—H90.9300
C18—C171.365 (8)C5—C41.381 (6)
C18—C191.367 (8)O4—C111.370 (7)
C18—H180.9300C11—C121.394 (7)
C17—C161.374 (9)C4—C31.350 (7)
C19—C141.394 (8)C4—H40.9300
C19—H190.9300C1—C21.424 (6)
C16—C151.370 (10)C1—C71.452 (7)
C16—H160.9300C7—N11.257 (6)
O3—N21.234 (4)C7—H70.9300
C15—C141.386 (8)C8—C131.377 (7)
C15—H150.9300C8—N11.412 (6)
C14—O41.360 (8)C2—O11.326 (6)
O2—N21.222 (5)C2—C31.383 (7)
N2—C51.449 (6)C3—H30.9300
C10—C91.365 (7)O1—H10.8200
C10—C111.379 (8)C13—C121.361 (7)
C6—C11.360 (6)C13—H130.9300
C6—C51.375 (6)C12—H120.9300
C6—H60.9300
C17—C18—C19121.0 (7)C4—C5—N2119.3 (5)
C17—C18—H18119.5C14—O4—C11120.2 (5)
C19—C18—H18119.5O4—C11—C10118.5 (5)
C18—C17—C16120.5 (8)O4—C11—C12121.8 (7)
C18—C17—Cl2121.1 (7)C10—C11—C12119.5 (6)
C16—C17—Cl2118.3 (6)C3—C4—C5119.2 (5)
C18—C19—C14119.8 (6)C3—C4—H4120.4
C18—C19—H19120.1C5—C4—H4120.4
C14—C19—H19120.1C6—C1—C2119.3 (5)
C15—C16—C17118.7 (7)C6—C1—C7120.2 (4)
C15—C16—H16120.6C2—C1—C7120.5 (6)
C17—C16—H16120.6N1—C7—C1121.4 (5)
C16—C15—C14121.9 (8)N1—C7—H7119.3
C16—C15—H15119.1C1—C7—H7119.3
C14—C15—H15119.1C13—C8—C9117.8 (5)
O4—C14—C15117.2 (7)C13—C8—N1117.9 (5)
O4—C14—C19124.7 (6)C9—C8—N1124.3 (6)
C15—C14—C19118.1 (8)O1—C2—C3120.2 (5)
O2—N2—O3121.7 (5)O1—C2—C1121.0 (5)
O2—N2—C5118.7 (4)C3—C2—C1118.7 (6)
O3—N2—C5119.6 (4)C7—N1—C8123.2 (5)
C9—C10—C11121.1 (5)C4—C3—C2121.4 (5)
C9—C10—Cl1120.1 (5)C4—C3—H3119.3
C11—C10—Cl1118.8 (5)C2—C3—H3119.3
C1—C6—C5120.0 (4)C2—O1—H1109.5
C1—C6—H6120.0C12—C13—C8122.8 (5)
C5—C6—H6120.0C12—C13—H13118.6
C10—C9—C8120.0 (6)C8—C13—H13118.6
C10—C9—H9120.0C13—C12—C11118.8 (6)
C8—C9—H9120.0C13—C12—H12120.6
C6—C5—C4121.3 (6)C11—C12—H12120.6
C6—C5—N2119.3 (4)
C14—C15—C16—C170.8 (11)C16—C17—C18—C192.7 (9)
C15—C16—C17—C182.0 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.564 (5)145
C7—H7···O3i0.932.513.321 (6)146
C6—H6···O3i0.932.493.319 (4)148
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC19H12Cl2N2O4
Mr403.21
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.5649 (8), 7.929 (1), 21.778 (4)
α, β, γ (°)86.260 (12), 83.596 (12), 70.739 (10)
V3)901.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.76 × 0.39 × 0.03
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.849, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
10061, 3475, 1473
Rint0.076
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.186, 1.05
No. of reflections3475
No. of parameters248
No. of restraints52
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.564 (5)145.2
C7—H7···O3i0.932.513.321 (6)146.1
C6—H6···O3i0.932.493.319 (4)148.4
Symmetry code: (i) x, y+2, z.
 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAygün, M., Işik, Ş., Öcal, N., Tahir, M. N., Kaban, Ş. & Büyükgüngör, O. (1998). Acta Cryst. C54, 527–529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationFaridbod, F., Ganjali, M. R., Dinarvand, R., Norouzi, P. & Riahi, S. (2008). Sensors, 8, 1645–1703.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaradayı, N., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1699–o1701.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaradayı, N., Aydemir, E., Kazak, C., Kirpi, E., Tuğcu, F. T., Gümü˛ş, M. K. & Kaban, Ş. (2005). Acta Cryst. E61, o2671–o2673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaradayı, N., Gözüyeşil, S., Güzel, B., Kazak, C. & Büyükgüngör, O. (2003). Acta Cryst. E59, o851–o853.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKöysal, Y., Öztürk Yildirim, S., Butcher, R. J. & Düğdü, E. (2012). Acta Cryst. E68, o2993–o2994.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRaja, K. K., Bilal, I. M., Thambidurai, S., Rajagopal, G. & SubbiahPandi, A. (2008). Acta Cryst. E64, o2265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds