[Journal logo]

Volume 69 
Part 6 
Page i38  
June 2013  

Received 15 April 2013
Accepted 17 May 2013
Online 25 May 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](Mo-S) = 0.001 Å
Disorder in main residue
R = 0.027
wR = 0.073
Data-to-parameter ratio = 48.8
Details
Open access

Na2.9KMo12S14: a novel quaternary reduced molybdenum sulfide containing Mo12 clusters with a channel structure

aUnité Sciences Chimiques de Rennes, UMR CNRS No. 6226, Université de Rennes I-INSA Rennes, Campus de Beaulieu, 35042 Rennes CEDEX, France, and bFaculty of Science III, Lebanese University, PO Box 826, Kobbeh-Tripoli, Lebanon
Correspondence e-mail: Patrick.Gougeon@univ-rennes1.fr

The crystal structure of trisodium potassium dodecamolybdenum tetradecasulfide, Na2.9 (2)KMo12S14, consists of Mo12S14S6 cluster units interconnected through interunit Mo-S bonds and delimiting channels in which the Na+ cations are disordered. The cluster units are centered at Wyckoff positions 2d and have point-group symmetry 3.2. The K atom lies on sites with 3.2 symmetry (Wyckoff site 2c) between two consecutive Mo12S14S6 units. One of the three independent S atoms and one Na atom lie on sites with 3.. symmetry (Wyckoff sites 4e and 4f). The other Na atom occupies a 2b position with -3.. symmetry. The crystal studied was a merohedral twin with refined components of 0.4951 (13) and 0.5049 (13).

Related literature

For a previous report on the compounds K1+xMo12S14 (x = 0, 1.1, 1.3, and 1.6), see: Picard et al. (2006[Picard, S., Gougeon, P. & Potel, M. (2006). Inorg. Chem. 45, 1611-1616.]). For details of the i- and a-type ligand notation, see: Schäfer & von Schnering (1964[Schäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833-849.]). For the program JANA2000, see: Petrícek & Dusek (2000[Petrícek, V. & Dusek, M. (2000). JANA2000. Institute of Physics, Praha, Czech Republic.]). The twinning was identified using the TwinRotMat routine in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Experimental

Crystal data
  • Na2.90KMo12S14

  • Mr = 1705.89

  • Trigonal, [P \overline 3_1 c ]

  • a = 9.3664 (1) Å

  • c = 16.2981 (2) Å

  • V = 1238.26 (2) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 7.24 mm-1

  • T = 100 K

  • 0.08 × 0.07 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. A19, 1014-1018.]) Tmin = 0.550, Tmax = 0.572

  • 37291 measured reflections

  • 2536 independent reflections

  • 2376 reflections with I > 2[sigma](I)

  • Rint = 0.056

Refinement
  • R[F2 > 2[sigma](F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.13

  • 2536 reflections

  • 52 parameters

  • [Delta][rho]max = 2.74 e Å-3

  • [Delta][rho]min = -1.84 e Å-3

Table 1
Selected bond lengths (Å)

Mo1-S3 2.3855 (10)
Mo1-S1i 2.4620 (8)
Mo1-S1 2.4822 (8)
Mo1-S1ii 2.4944 (8)
Mo1-S2 2.5907 (7)
Mo1-Mo1iii 2.6296 (5)
Mo1-Mo2 2.7155 (4)
Mo1-Mo2i 2.7803 (4)
Mo2-S1 2.4589 (7)
Mo2-S2 2.4655 (7)
Mo2-S2iii 2.4904 (8)
Mo2-S2iv 2.5866 (7)
Mo2-Mo2v 2.6440 (5)
Mo2-Mo2iv 2.6745 (5)
Mo2-Mo2i 2.6765 (4)
K1-S3 2.9460 (13)
K1-S2vi 3.4188 (7)
K1-S2vii 3.4188 (7)
K1-S2viii 3.4188 (7)
Na1-S2ix 3.3131 (17)
Na1-S1x 3.856 (12)
Na1-S2xi 3.898 (11)
Na2-S1xii 3.210 (12)
Na2-S2xiii 3.56 (2)
Symmetry codes: (i) -x+y+1, -x+1, z; (ii) -x+1, -y, -z; (iii) -y+1, x-y, z; (iv) [-x+y+1, y, -z+{\script{1\over 2}}]; (v) [-y+1, -x+1, -z+{\script{1\over 2}}]; (vi) y+1, -x+y+1, -z; (vii) [-x+1, -x+y+1, z-{\script{1\over 2}}]; (viii) x-y, x, -z; (ix) -x+y, -x, z; (x) -y, x-y-1, z; (xi) [x, x-y, -z+{\script{1\over 2}}]; (xii) x-1, y, z; (xiii) -y, x-y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg, 1998[Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Bergerhoff, 1996[Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2051 ).


Acknowledgements

Intensity data were collected on the Nonius KappaCCD X-ray diffactometer system of the Centre de Diffractométrie de l'Université de Rennes I (www.cdifx.univ-rennes1.fr).

References

Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.
Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.
Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. A19, 1014-1018.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Petrícek, V. & Dusek, M. (2000). JANA2000. Institute of Physics, Praha, Czech Republic.
Picard, S., Gougeon, P. & Potel, M. (2006). Inorg. Chem. 45, 1611-1616.  [ISI] [CrossRef] [PubMed] [ChemPort]
Schäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833-849.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, i38  [ doi:10.1107/S1600536813013603 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.