Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-[(E)-(4-Ethoxybenzylidene)amino]phenol

Narissara Kaewmanee, ${ }^{\text {a }}$ Suchada Chantrapromma, ${ }^{\text {b }} \boldsymbol{}$ \ddagger Nawong Boonnak ${ }^{\mathrm{c}}$ and Hoong-Kun Fun ${ }^{\mathrm{d}, \mathrm{e}} \S$

${ }^{\text {a }}$ Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ${ }^{\text {c }}$ Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ${ }^{\text {d} X \text {-ray Crystallography Unit, School }}$ of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and
${ }^{\mathbf{e}}$ Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
Correspondence e-mail: suchada.c@psu.ac.th
Received 24 April 2013; accepted 8 May 2013
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.030 ; w R$ factor $=0.086$; data-to-parameter ratio $=14.2$.

The molecule of the title compound, $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$, adopts a trans conformation with respect to the methylidene $\mathrm{C}=\mathrm{N}$ bond and is twisted with a dihedral angle of 26.31 (5) ${ }^{\circ}$ between the two substituted benzene rings. The ethoxy group is almost coplanar with the bound benzene ring with a $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ torsion angle of $-179.08(9)^{\circ}$. In the crystal, molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions into chains propagating in the [011] and [01 $\overline{1}]$ directions. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are also present.

Related literature

For standard bond lengths, see: Allen et al. (1987). For background to and applications of aza-stilbene, see: Cheng et al. (2010); da Silva et al. (2011); Kabir et al. (2008); Lu et al. (2012); Pavan et al. (2011). For related structures, see: Sun et al. (2011); Wang (2009).

Experimental

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
$V=1268.45(13) \AA^{3}$
$M_{r}=241.28$
Orthorhombic, Pna 2_{1}
$Z=4$
$a=18.6882(11) \AA$
$b=10.7420$ (6) A
$c=6.3186$ (4) \AA
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.59 \times 0.27 \times 0.25 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.952, T_{\text {max }}=0.979$
16922 measured reflections 2382 independent reflections 2319 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.086$
$S=1.10$
2382 reflections
168 parameters
1 restraint

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.35$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).
Cg 1 is the centroid of the $\mathrm{C} 8-\mathrm{C} 13$ ring

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 1 O 2 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.83 (2)	1.87 (2)	2.6971 (12)	172 (2)
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 2^{\text {ii }}$	0.95	2.51	3.3956 (14)	156
$\mathrm{C} 9-\mathrm{H} 94 \cdots \mathrm{O} 2{ }^{\text {iii }}$	0.95	2.38	3.3229 (13)	171
$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B} \cdots \mathrm{Cg} 1^{\text {iv }}$	0.99	2.90	3.7668 (12)	147

Symmetry codes: (i) $-x+\frac{3}{2}, y-\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x+\frac{3}{2}, y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $-x+\frac{3}{2}, y+\frac{1}{2}, z+\frac{1}{2}$; (iv) $-x+2,-y+1, z-\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

NK thanks the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, and the Graduate School, Prince of Songkla University, for financial support. The authors extend their appreciation to the Malaysian Government and Universiti Sains Malaysia for APEX DE2012 grant No. 1002/ PFIZIK/910323, and the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University.

[^0][^1]
organic compounds

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19

Bruker (2009). APEX2, SAINT and $S A D A B S$, Bruker AXS Inc., Madison, Wisconsin, USA.
Cheng, L.-X., Tang, J.-J., Luo, H., Jin, X.-L., Dai, F., Yang, J., Qian, Y.-P., Li, X.-Z. \& Zhou, B. (2010). Bioorg. Med. Chem. Lett. 20, 2417-2420.

Kabir, M. S., Engelbrecht, K., Polanowski, R., Krueger, S. M., Ignasiak, R., Rott, M., Schwan, W. R., Stemper, M. E., Reed, K. D., Sherman, D., Cook, J. M. \& Monte, A. (2008). Bioorg. Med. Chem. Lett. 18, 5745-5749.

Lu, J., Li, C., Chai, Y.-F., Yang, D.-Y. \& Sun, C.-R. (2012). Bioorg. Med. Chem. Lett. 22, 5744-5747.
Pavan, F. R., de Carvalho, G. S. G., da Silva, A. D. \& Leite, C. Q. F. (2011). Sci. World J. 11, 1113-1119.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Silva, C. M. da, da Silva, D. L., Martins, C. V. B., de Resende, M. A., Dias, E. S., Magalhaes, T. F. F., Rodrigues, L. P., Sabino, A. A., Alves, R. B. \& de Fatima, A. (2011). Chem. Biol. Drug Des. 78, 810-815.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Sun, L.-X., Yu, Y.-D. \& Wei, G.-Y. (2011). Acta Cryst. E67, o1578
Wang, C.-Y. (2009). Acta Cryst. E65, o741.

supporting information

Acta Cryst. (2013). E69, o903-o904 [doi:10.1107/S1600536813012580]

4-[(E)-(4-Ethoxybenzylidene)amino]phenol

Narissara Kaewmanee, Suchada Chantrapromma, Nawong Boonnak and Hoong-Kun Fun

S1. Comment

Aza-stilbene derivatives derived from the reaction of an aldehyde with hydrazine have been shown to possess potent biological activities such as antibacterial (Kabir et al., 2008), antifungal (da Silva et al., 2011), antimycobacterium tuberculosis (Pavan et al., 2011) and antioxidation (Cheng et al., 2010; Lu et al., 2012) properties. These interesting biological activities of aza-stilbene led us to synthesize the title compound, (I), and study its antibacterial activity. Our antibacterial assay showed that (I) exhibits moderate activity against Salmonella typhi with the minimun inhibition concentration (MIC) value of $18.75 \mu \mathrm{~g} / \mathrm{ml}$. We report here the crystal structure of the title compound.
The molecule of (I) (Fig. 1), $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$, is twisted and exists in a trans configuration with respect to the methylidene $\mathrm{C} 7=\mathrm{N} 1$ double bond $\left[1.2867(13) \AA\right.$] with the torsion angle $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1=179.23$ (8) ${ }^{\circ}$. The dihedral angle between the two substituted benzene rings is $26.31(5)^{\circ}$. The ethoxy group is co-planar with the bound benzene ring with the r.m.s. deviation of 0.0155 (1) \AA for the nine non H -atoms and the $\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 14-\mathrm{C} 15$ angle is $-179.08(9)^{\circ}$. The bond distances are within the normal range (Allen et al., 1987) and are in agreement with those reported for related structures (Sun et al., 2011; Wang, 2009).
In the crystal structure (Fig. 2), the molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1) into chains propagating in the [011] and [01 $\overline{1}]$ directions. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the ethoxy group and the hydroxy substituted rings are also present (Table 1).

S2. Experimental

The title compound (I) was prepared by dissolving 4-benzylideneaniline ($5 \mathrm{mmol}, 0.50 \mathrm{~g}$) in ethanol (30 ml) and 4-ethoxybenzaldehyde ($5 \mathrm{mmol}, 0.70 \mathrm{ml}$) was slowly added with stirring. The solution was stirred at room temperature for around 3 hr yielding a white solid, which was filtered off and washed with cold ethanol and dried in air. Colourless blockshaped single crystals of (I) suitable for X-ray structure determination were recrystallized from methanol by slow evaporation at room temperature after several days, M. p. 470-472 K.

S3. Refinement

The hydroxyl H atom was located in a difference map and refined isotropically. The remaining H atoms were fixed geometrically and allowed to ride on their parent atoms, with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.95 \AA$ for aromatic and $\mathrm{CH}, 0.99 \AA$ for CH_{2} and $0.98 \AA$ for CH_{3} atoms. The $U_{\text {iso }}$ values were constrained to be $1.5 U_{\text {eq }}$ of the carrier atom for methyl H atoms and $1.2 U_{\mathrm{eq}}$ for the remaining H atoms. A rotating group model was used for the methyl group. 1762 Friedel pairs were merged as there is insufficient anomalous dispersion to determine the absolute structure since Mo radiation was used for data collection.

Figure 1
The asymmetric unit of the title compound showing 65% probability displacement ellipsoids.

Figure 2
Crystal packing of the title compound viewed along the c axis. Hydrogen bonds are drawn as dashed lines.

4-[(E)-(4-Ethoxybenzylidene)amino]phenol

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
$M_{r}=241.28$
Orthorhombic, Pna_{1}
Hall symbol: P 2c -2n
$a=18.6882$ (11) \AA

$$
\begin{aligned}
& b=10.7420(6) \AA \\
& c=6.3186(4) \AA \\
& V=1268.45(13) \AA^{3} \\
& Z=4 \\
& F(000)=512
\end{aligned}
$$

$D_{\mathrm{x}}=1.263 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=470-472 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2382 reflections
$\theta=2.2-32.0^{\circ}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.33 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.952, T_{\text {max }}=0.979$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.086$
$S=1.10$
2382 reflections
168 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.59 \times 0.27 \times 0.25 \mathrm{~mm} \\
& \\
& \\
& 16922 \text { measured reflections } \\
& 2382 \text { independent reflections } \\
& 2319 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.025 \\
& \theta_{\max }=32.0^{\circ}, \theta_{\min }=2.2^{\circ} \\
& h=-27 \rightarrow 27 \\
& k=-16 \rightarrow 15 \\
& l=-9 \rightarrow 9
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0562 P)^{2}+0.1397 P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.35$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Special details

Experimental. The data was collected with the Oxford Cryosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$1.07262(4)$	$0.90374(7)$	$0.65280(16)$	$0.02092(17)$
O2	$0.68429(4)$	$0.01683(7)$	$0.72655(13)$	$0.01662(15)$
H1O2	$0.6732(11)$	$0.000(2)$	$0.851(4)$	$0.038(5)^{*}$
N1	$0.85372(4)$	$0.43914(7)$	$0.61658(15)$	$0.01367(16)$
C1	$0.93803(5)$	$0.59761(9)$	$0.72367(18)$	$0.01420(18)$
C2	$0.97668(5)$	$0.64779(9)$	$0.89339(19)$	$0.01686(19)$
H2A	0.9725	0.6113	1.0298	0.020^{*}
C3	$1.02104(6)$	$0.75025(10)$	$0.86479(19)$	$0.0181(2)$
H3A	1.0468	0.7835	0.9813	0.022^{*}

C4	$1.02770(5)$	$0.80430(9)$	$0.66463(19)$	$0.01595(19)$
C5	$0.98933(6)$	$0.75587(10)$	$0.49369(19)$	$0.01789(19)$
H5A	0.9934	0.7928	0.3576	0.021^{*}
C6	$0.94517(6)$	$0.65320(10)$	$0.52393(19)$	$0.01713(19)$
H6A	0.9194	0.6201	0.4072	0.021^{*}
C7	$0.89365(5)$	$0.48741(8)$	$0.76077(17)$	$0.01413(18)$
H7A	0.8944	0.4500	0.8970	0.017^{*}
C8	$0.81221(5)$	$0.33104(9)$	$0.65972(16)$	$0.01283(17)$
C9	$0.78245(5)$	$0.30394(9)$	$0.85792(16)$	$0.01439(18)$
H9A	0.7915	0.3572	0.9750	0.017^{*}
C10	$0.73949(5)$	$0.19880(9)$	$0.88339(16)$	$0.01468(17)$
H10A	0.7190	0.1811	1.0176	0.018^{*}
C11	$0.72652(5)$	$0.11939(8)$	$0.71249(17)$	$0.01325(17)$
C12	$0.75683(6)$	$0.14583(9)$	$0.51485(17)$	$0.01527(18)$
H12A	0.7489	0.0913	0.3988	0.018^{*}
C13	$0.79848(5)$	$0.25179(9)$	$0.48866(16)$	$0.01442(17)$
H13A	0.8178	0.2707	0.3534	0.017^{*}
C14	$1.08402(6)$	$0.95958(10)$	$0.4482(2)$	$0.0215(2)$
H14A	1.0383	0.9914	0.3904	0.026^{*}
H14B	1.1037	0.8975	0.3482	0.026^{*}
C15	$1.13632(6)$	$1.06515(11)$	$0.4787(3)$	$0.0285(3)$
H15A	1.1448	1.1065	0.3427	0.043^{*}
H15B	1.1816	1.0323	0.5335	0.043^{*}
H15C	1.1165	1.1253	0.5795	

Atomic displacement parameters $\left(\hat{\AA}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0213(3)$	$0.0180(3)$	$0.0234(4)$	$-0.0072(3)$	$-0.0018(3)$	$-0.0007(3)$
O2	$0.0230(3)$	$0.0138(3)$	$0.0131(3)$	$-0.0056(2)$	$0.0018(3)$	$-0.0011(3)$
N1	$0.0156(3)$	$0.0116(3)$	$0.0138(4)$	$-0.0003(3)$	$0.0002(3)$	$0.0000(3)$
C1	$0.0144(4)$	$0.0133(3)$	$0.0148(4)$	$-0.0003(3)$	$-0.0007(3)$	$-0.0011(3)$
C2	$0.0177(4)$	$0.0183(4)$	$0.0146(4)$	$-0.0008(3)$	$-0.0029(4)$	$-0.0003(4)$
C3	$0.0174(4)$	$0.0193(4)$	$0.0176(5)$	$-0.0023(3)$	$-0.0036(4)$	$-0.0023(4)$
C4	$0.0146(4)$	$0.0140(4)$	$0.0193(5)$	$-0.0013(3)$	$-0.0018(4)$	$-0.0007(4)$
C5	$0.0199(4)$	$0.0175(4)$	$0.0162(5)$	$-0.0045(3)$	$-0.0025(4)$	$0.0009(4)$
C6	$0.0188(4)$	$0.0176(4)$	$0.0150(4)$	$-0.0044(3)$	$-0.0017(4)$	$-0.0002(4)$
C7	$0.0153(4)$	$0.0132(4)$	$0.0139(4)$	$-0.0001(3)$	$0.0000(3)$	$-0.0002(3)$
C8	$0.0144(3)$	$0.0114(3)$	$0.0126(4)$	$0.0002(3)$	$-0.0005(3)$	$0.0001(3)$
C9	$0.0184(4)$	$0.0128(4)$	$0.0119(4)$	$-0.0005(3)$	$0.0006(3)$	$-0.0015(3)$
C10	$0.0192(4)$	$0.0137(4)$	$0.0111(4)$	$-0.0010(3)$	$0.0012(4)$	$-0.0007(3)$
C11	$0.0161(4)$	$0.0113(3)$	$0.0123(4)$	$-0.0001(3)$	$0.0005(3)$	$-0.0001(3)$
C12	$0.0196(4)$	$0.0143(4)$	$0.0119(4)$	$-0.0018(3)$	$0.0011(4)$	$-0.0015(3)$
C13	$0.0181(4)$	$0.0146(4)$	$0.0106(4)$	$-0.0011(3)$	$0.0009(4)$	$-0.0010(3)$
C14	$0.0199(4)$	$0.0176(4)$	$0.0269(6)$	$-0.0038(3)$	$-0.0014(4)$	$0.0044(4)$
C15	$0.0236(5)$	$0.0201(5)$	$0.0420(8)$	$-0.0071(4)$	$0.0000(5)$	$0.0019(5)$

Geometric parameters (A, ${ }^{\circ}$)

O1-C4	$1.3605(11)$	C7-H7A	0.9500
O1-C14	$1.4412(16)$	C8-C13	$1.3996(14)$
O2-C11	$1.3581(11)$	C8-C9	$1.4009(14)$
O2-H1O2	$0.83(3)$	C9-C10	$1.3951(13)$
N1-C7	$1.2867(13)$	C9-H9A	0.9500
N1-C8	$1.4228(12)$	C10-C11	$1.3973(14)$
C1-C2	$1.4008(15)$	C10-H10A	0.9500
C1-C6	$1.4026(16)$	C11-C12	$1.4004(15)$
C1-C7	$1.4643(13)$	C12-C13	$1.3887(13)$
C2-C3	$1.3898(14)$	C12-H12A	0.9500
C2-H2A	0.9500	C13-H13A	0.9500
C3-C4	$1.3972(16)$	C14-C15	$1.5094(15)$
C3-H3A	0.9500	C14-H14A	0.9900
C4-C5	$1.3970(15)$	C14-H14B	0.9900
C5-C6	$1.3906(14)$	C15-H15A	0.9800
C5-H5A	0.9500	C15-H15B	0.9800
C6-H6A	0.9500	C15-H15C	0.9800
C4-O1-C14	$117.86(9)$	C10-C9-C8	$119.99(9)$
C11-O2-H1O2	$112.7(15)$	C10-C9-H9A	120.0
C7-N1-C8	$120.62(9)$	C8-C9-H9A	120.0
C2-C1-C6	$118.43(9)$	C9-C10-C11	$120.33(9)$
C2-C1-C7	$118.72(10)$	C9-C10-H10A	119.8
C6-C1-C7	$122.83(9)$	C11-C10-H10A	119.8
C3-C2-C1	$120.85(11)$	O2-C11-C10	123.06 (9)
C3-C2-H2A	119.6	O2-C11-C12	$117.25(9)$
C1-C2-H2A	119.6	C10-C11-C12	$119.68(9)$
C2-C3-C4	$120.00(10)$	C13-C12-C11	$119.95(9)$
C2-C3-H3A	120.0	C13-C12-H12A	120.0
C4-C3-H3A	120.0	C11-C12-H12A	120.0
O1-C4-C5	$124.52(10)$	C12-C13-C8	$120.62(9)$
O1-C4-C3	$115.52(9)$	C12-C13-H13A	119.7
C5-C4-C3	$119.96(9)$	C8-C13-H13A	119.7
C6-C5-C4	$119.59(10)$	O1-C14-C15	$107.10(11)$
C6-C5-H5A	120.2	O1-C14-H14A	110.3
C4-C5-H5A	120.2	C15-C14-H14A	110.3
C5-C6-C1	$121.18(10)$	O1-C14-H14B	110.3
C5-C6-H6A	119.4	C15-C14-H14B	110.3
C1-C6-H6A	119.4	H14A-C14-H14B	108.5
N1-C7-C1	$122.74(9)$	C14-C15-H15A	109.5
N1-C7-H7A	118.6	C14-C15--H15B	109.5
C1-C7-H7A	118.6	H15A-C15-H15B	109.5
C13-C8-C9	$119.41(9)$	C14-C15-H15C	109.5
C13-C8-N1	H15A-C15-H15C	109.5	
C9-C8-N1	H15B-C15-H15C	109.5	

supporting information

$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.01(15)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$-5.42(15)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.24(9)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 13$	$-150.56(9)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.20(15)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$32.46(13)$
$\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$-2.99(14)$	$\mathrm{C} 13-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.07(14)$
$\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$\mathrm{~N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$176.84(9)$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$-179.72(9)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$0.67(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.48(15)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{O} 2$	$-178.92(9)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$179.64(9)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-0.06(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.58(16)$	$\mathrm{C} 2-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$177.76(9)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.40(16)$	$\mathrm{C} 11-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 13-\mathrm{C} 8-\mathrm{C}-\mathrm{C} 13-\mathrm{C} 12$	$-1.16(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$\mathrm{~N} 1-\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 12$	$1.78(15)$	
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 14-\mathrm{C} 15$	$-1.16(14)$	
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$		$-178.29(9)$	
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$179.23(9)$	$-179.08(9)$	

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$C g 1$ is the centroid of the $\mathrm{C} 8-\mathrm{C} 13$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 1 O 2 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.83(2)$	$1.87(2)$	$2.6971(12)$	$172(2)$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.95	2.51	$3.3956(14)$	156
$\mathrm{C} 9 — \mathrm{H} 9 A \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.95	2.38	$3.3229(13)$	171
$\mathrm{C} 14 — \mathrm{H} 14 B^{\cdots} C g 1^{\mathrm{iv}}$	0.99	2.90	$3.7668(12)$	147

Symmetry codes: (i) $-x+3 / 2, y-1 / 2, z+1 / 2$; (ii) $-x+3 / 2, y+1 / 2, z-1 / 2$; (iii) $-x+3 / 2, y+1 / 2, z+1 / 2$; (iv) $-x+2,-y+1, z-1 / 2$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5061).

[^1]: \ddagger Thomson Reuters ResearcherID: A-5085-2009.
 § Additional correspondence author, e-mail: hfun@usm.my. Thomson Reuters
 ResearcherID: A-3561-2009.

