Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Amino-5,6-dimethyl-1,2,4-triazin-2ium nitrate

Souhir Bel Haj Salah, ${ }^{\text {a }}$ Mohamed Lahbib Mrad, ${ }^{\text {a }}$ Valeria Ferretti, ${ }^{\text {b }}$ Frederic Lefebvre ${ }^{\text {c }}$ and Cherif Ben Nasr ${ }^{\text {a* }}$

${ }^{\text {a }}$ Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisie, ${ }^{\mathbf{b}}$ Department of Chemical and Pharmaceutical Sciences, Centre for Structural Diffractometry, University of Ferrara, Via L. Borsari 46, I-44121 Ferrara, Italy, and ${ }^{\mathbf{c}}$ Laboratoire de Chimie Organométallique de Surface (LCOMS), Ecole Superiéure de Chimie Physique Electronique, Villeurbanne Cedex, France Correspondence e-mail: cherif_bennasr@yahoo.fr

Received 24 April 2013; accepted 2 May 2013

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.049 ; w R$ factor $=0.161$; data-to-parameter ratio $=13.0$.

In the title compound, $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{4}{ }^{+} \cdot \mathrm{NO}_{3}{ }^{-}$, the organic cations and the nitrate anions have both crystallographically imposed mirror symmetry and are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming infinite chains running along the c-axis direction. The values of the $\mathrm{N}-\mathrm{O}$ bond lengths [1.2256 (19)-1.2642 (18) A] and $\mathrm{O}-\mathrm{N}-\mathrm{O}$ angles [118.39 (16)-121.64 (15) ${ }^{\circ}$] indicate that the nitrate anion exhibits a slightly distorted $\mathrm{C}_{3 h}$ geometry. The N atom of the NH_{2} group has $s p^{2}$ character.

Related literature

For general background to hybrid materials, see: BenaliCherif et al. (2007); Messai et al. (2009). For studies of amine salts, see: Jayaraman et al. (2002); Steiner (2002). For related structures, see: Gilli et al. (1994); Boenigk \& Mootz (1988); Jin et al. (2001).

Experimental

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{4}^{+} \cdot \mathrm{NO}_{3}{ }^{-}$
$M_{r}=187.17$
Orthorhombic, Pnma

$$
\begin{aligned}
& a=19.7213(2) \AA \\
& b=6.4245(2) \AA \\
& c=6.7197(6) \AA
\end{aligned}
$$

$V=851.38(8) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Data collection
Nonius KappaCCD diffractometer
2321 measured reflections
1326 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.161$
$S=1.04$
1326 reflections

$$
\begin{aligned}
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=295 \mathrm{~K} \\
& 0.32 \times 0.18 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

1031 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.014$

102 parameters

All H -atom parameters refined
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 N \cdots \mathrm{O} 1$	$0.98(4)$	$1.79(4)$	$2.770(2)$	$178(3)$
$\mathrm{N} 4-\mathrm{H} 1 N \cdots \mathrm{O} 2$	$0.97(3)$	$1.93(3)$	$2.898(2)$	$166(3)$
$\mathrm{N} 4-\mathrm{H} 2 N \cdots 1^{\mathrm{i}}$	$0.87(4)$	$2.18(4)$	$3.043(2)$	$173(3)$

Symmetry code: (i) $x, y, z+1$.
Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 2012).

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5062).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Benali-Cherif, N., Kateb, A., Boussekine, H., Boutobba, Z. \& Messai, A. (2007). Acta Cryst. E63, o3251.

Boenigk, D. \& Mootz, D. (1988). J. Am. Chem. Soc. 110, 2135-2139.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEP-III, Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gilli, P., Bertolasi, V., Ferretti, V. \& Gilli, G. (1994). J. Am. Chem. Soc. 116, 909-915.
Jayaraman, K., Choudhury, A. \& Rao, C. N. R. (2002). Solid State Sci. 4, 413422.

Jin, Z. M., Pan, Y. J., Hu, M. L. \& Shen, L. (2001). J. Chem. Crystallogr. 31, 191-195.
Messai, A., Direm, A., Benali-Cherif, N., Luneau, D. \& Jeanneau, E. (2009). Acta Cryst. E65, o460.
Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.

supporting information

Acta Cryst. (2013). E69, o844 [doi:10.1107/S1600536813012026]

3-Amino-5,6-dimethyl-1,2,4-triazin-2-ium nitrate

Souhir Bel Haj Salah, Mohamed Lahbib Mrad, Valeria Ferretti, Frederic Lefebvre and Cherif Ben Nasr

S1. Comment

The blending of the organic and inorganic components in the hybrid materials allows to the development of compounds having novel properties (Benali-Cherif et al., 2007; Messai et al., 2009). Among these materials, salts of amines attracted more attention due to their potential importance (Jayaraman et al., 2002; Steiner et al., 2002). As a contribution to the study of this compound family, we report in this work the synthesis and the crystal structure of a new organic cation nitrate $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{4}^{+} . \mathrm{NO}_{3}^{-}(\mathrm{I})$.
The molecular structure of the title compound, as well as the atomic numbering scheme employed, are illustrated in Fig. 1. One 3 -amino-5,6-dimethyl-1,2,4-triazinium cation and one discrete nitrate anion, both having crystallographically imposed mirror symmetry, comprise the asymmetric unit. The protonated N3 triazine nitrogen atom is involved in a positive charge assisted $\mathrm{N} — \mathrm{H} \cdots \mathrm{O}$ hydrogen bond $\left(\mathrm{N} \cdots \mathrm{O}=2.770(2) \AA\right.$) with a neighboring $\mathrm{NO}_{3}{ }^{-}$anion (Gilli et al., 1994). The NH_{2} unit of the cation cooperates in two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds ($\mathrm{N} \cdots \mathrm{O}=2.898$ (2) and 3.043 (2) \AA) with two neighboring nitrate anions. These hydrogen bonds link the organic entities and the nitrate anions to form infinite chains running along the c-axis direction (Table 1; Fig.2) and situated at $x=\mathrm{n} / 2$ and $y \sim n+/-1 / 4$. Examination of the organic cation geometry shows that the $\mathrm{N} 4-\mathrm{C} 1$ distance of 1.318 (2) \AA, which is of the same order of magnitude than the $\mathrm{N}-\mathrm{C}$ bond of the triazine ring, clearly indicates that the N 4 atom has a $s p^{2}$ character. This is well confirmed by the sum of the angles around N 4 equal to $360.0(2)^{\circ}$. The value of the $\mathrm{C} 1-\mathrm{N} 3-\mathrm{N} 2$ angle [123.48(13) ${ }^{\circ}$] is larger than that of the $\mathrm{C} 2-$ $\mathrm{N} 2-\mathrm{N} 3$ angle $\left[116.81(14)^{\circ}\right]$, which is consistent with the protonation of the N3 nitrogen atom (Boenigk \& Mootz, 1988; Jin et al., 2001). No $\pi \cdots \pi$ stacking interactions between the organic rings or $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions towards them are observed. The geometrical parameters of the nitrate anion are in the normal range. The $\mathrm{N}-\mathrm{O}$ bond lenghts range from 1.2256 (19) to 1.2642 (18) \AA and the $\mathrm{O} — \mathrm{~N} — \mathrm{O}$ bond angles range from 118.39 (16) to 121.64 (15) ${ }^{\circ}$], showing that the nitrate anion exhibits a slightly distorted $\mathrm{C}_{3 \mathrm{~h}}$ geometry. These geometrical features are comparable to those previously reported for the 4-aminopyridinium nitrate salt where the N - O bond distances are in the range 1.2383 (15)-1.2632 (15) \AA and the values of the $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angles are between 118.42 (12) and $121.80(13)^{\circ}$. It is worth noting that the $\mathrm{N}-$ O distances involving atoms O 1 and O 2 are longer than the third, involving atom O 3 . This is probably due to the fact that the later oxygen atom is not acting as acceptor of hydrogen bonding.

S2. Experimental

Commercial 3-amino-5,6-dimethyl-1,2,4-triazine (3 mmol) was dissolved in water/nitric acid ($50: 1 \mathrm{v} / \mathrm{v}$). The resultant mixture was evaporated at room temperature. Crystals of the title compound, which remained stable under normal conditions of temperature and humidity, were isolated after several days and subjected to X-ray diffraction analysis (yield 58\%).

S3. Refinement

Refinement was performed on F^{2} by full-matrix least-squares methods with all non-hydrogen atoms anisotropic. All H atoms were found in a difference Fourier map and refined isotropically.

Figure 1

A view of the title compound, showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. Interionic hydrogen bonds are shown as dashed lines.

Figure 2

Crystal packing of the title compound, viewed down the b axis, showing the chains formed between the nitrate anions and the organic cations. Hydrogen bonds are shown as dotted lines.

```
    b
```


Figure 3

Crystal packing of the title compound viewed along the c axis.

3-Amino-5,6-dimethyl-1,2,4-triazin-2-ium nitrate

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{4}{ }^{+} \cdot \mathrm{NO}_{3}{ }^{-}$
$M_{r}=187.17$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=19.7213$ (2) \AA
$b=6.4245$ (2) \AA
$c=6.7197$ (6) \AA
$V=851.38(8) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ scans and ω scans
2321 measured reflections
1326 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.161$
$S=1.04$
1326 reflections
102 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods
$F(000)=392$
$D_{\mathrm{x}}=1.460 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2321 reflections
$\theta=2.0-30.0^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Rod, colourless
$0.32 \times 0.18 \times 0.12 \mathrm{~mm}$

1031 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=3.8^{\circ}$
$h=-27 \rightarrow 27$
$k=-8 \rightarrow 8$
$l=-9 \rightarrow 9$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
O1	$-0.07155(6)$	0.2500	$-0.1964(2)$	$0.0634(4)$
O2	$-0.15520(7)$	0.2500	$0.0121(2)$	$0.0705(5)$
O3	$-0.17374(7)$	0.2500	$-0.3030(2)$	$0.0767(5)$
N1	$0.04674(7)$	0.2500	$0.4549(2)$	$0.0477(4)$
N2	$0.08600(8)$	0.2500	$0.0580(2)$	$0.0520(4)$
N3	$0.02034(7)$	0.2500	$0.11531(19)$	$0.0478(4)$
N4	$-0.06438(7)$	0.2500	$0.3511(2)$	$0.0562(4)$
N5	$-0.13454(7)$	0.2500	$-0.1615(2)$	$0.0519(4)$
C1	$0.00063(7)$	0.2500	$0.3055(2)$	$0.0419(4)$
C2	$0.13126(8)$	0.2500	$0.1986(2)$	$0.0479(4)$
C3	$0.11066(8)$	0.2500	$0.4046(2)$	$0.0462(4)$
C4	$0.20428(9)$	0.2500	$0.1392(4)$	$0.0650(5)$
C5	$0.16177(11)$	0.2500	$0.5668(3)$	$0.0695(6)$
H1N	$-0.1005(17)$	0.2500	$0.254(5)$	$0.100(9)^{*}$
H2N	$-0.0701(14)$	0.2500	$0.479(5)$	$0.083(8)^{*}$
H3N	$-0.0130(17)$	0.2500	$0.007(5)$	$0.086(7)^{*}$
H1	$0.2269(9)$	$0.133(3)$	$0.203(3)$	$0.092(6)^{*}$
H2	$0.206(3)$	0.2500	$0.019(9)$	$0.153(16)^{*}$
H3	$0.1438(16)$	0.2500	$0.683(5)$	$0.102(10)^{*}$
H4	$0.1920(13)$	$0.130(3)$	$0.544(4)$	$0.128(8)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0410(6)$	$0.1020(10)$	$0.0472(7)$	0.000	$0.0003(5)$	0.000
O2	$0.0505(7)$	$0.1173(12)$	$0.0438(7)$	0.000	$0.0051(6)$	0.000
O3	$0.0532(8)$	$0.1263(14)$	$0.0506(8)$	0.000	$-0.0160(6)$	0.000
N1	$0.0417(7)$	$0.0647(8)$	$0.0366(6)$	0.000	$-0.0006(5)$	0.000
N2	$0.0452(7)$	$0.0729(9)$	$0.0379(7)$	0.000	$0.0026(5)$	0.000
N3	$0.0419(7)$	$0.0646(8)$	$0.0369(6)$	0.000	$-0.0028(5)$	0.000
N4	$0.0405(7)$	$0.0801(10)$	$0.0480(8)$	0.000	$0.0019(6)$	0.000
N5	$0.0421(7)$	$0.0695(9)$	$0.0441(7)$	0.000	$-0.0033(5)$	0.000
C1	$0.0400(7)$	$0.0475(7)$	$0.0381(7)$	0.000	$-0.0010(6)$	0.000
C2	$0.0421(7)$	$0.0592(9)$	$0.0424(8)$	0.000	$0.0024(6)$	0.000
C3	$0.0412(7)$	$0.0583(8)$	$0.0390(7)$	0.000	$-0.0015(6)$	0.000
C4	$0.0416(8)$	$0.0970(15)$	$0.0564(11)$	0.000	$0.0075(8)$	0.000
C5	$0.0474(9)$	$0.1150(18)$	$0.0461(10)$	0.000	$-0.0072(8)$	0.000

Geometric parameters (A, ${ }^{\circ}$)

O1-N5	1.2642 (18)	N4-H1N	0.97 (3)
O2-N5	1.236 (2)	N4-H2N	0.87 (4)
O3-N5	1.2256 (19)	$\mathrm{C} 2-\mathrm{C} 3$	1.443 (2)
N1-C3	1.305 (2)	C2-C4	1.494 (2)
N1-C1	1.3547 (19)	C3-C5	1.485 (2)
N2-C2	1.300 (2)	C4-H1	0.972 (17)
N2-N3	1.3510 (19)	C4-H2	0.81 (6)
N3-C1	1.3357 (19)	C5-H3	0.86 (3)
N3-H3N	0.98 (4)	C5-H4	0.99 (2)
N4-C1	1.3183 (19)		
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	117.14 (14)	N3-C1-N1	120.93 (14)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 3$	116.81 (14)	N2-C2-C3	120.27 (15)
$\mathrm{C} 1-\mathrm{N} 3-\mathrm{N} 2$	123.48 (13)	N2-C2-C4	117.90 (16)
C1-N3-H3N	121 (2)	C3-C2-C4	121.83 (15)
N2-N3-H3N	116 (2)	N1-C3-C2	121.37 (14)
C1-N4-H1N	124 (2)	N1-C3-C5	117.75 (16)
$\mathrm{C} 1-\mathrm{N} 4-\mathrm{H} 2 \mathrm{~N}$	111.0 (18)	C2-C3-C5	120.88 (15)
$\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 4-\mathrm{H} 2 \mathrm{~N}$	125 (2)	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 1$	108.9 (11)
$\mathrm{O} 3-\mathrm{N} 5-\mathrm{O} 2$	121.64 (15)	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 2$	108 (4)
$\mathrm{O} 3-\mathrm{N} 5-\mathrm{O} 1$	118.39 (16)	H1-C4-H2	115 (2)
$\mathrm{O} 2-\mathrm{N} 5-\mathrm{O} 1$	119.97 (15)	C3-C5-H3	113 (2)
N4-C1-N3	120.37 (14)	C3-C5-H4	107.1 (15)
N4-C1-N1	118.70 (15)	H3-C5-H4	113.1 (17)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3N $\cdots \mathrm{O} 1$	$0.98(4)$	$1.79(4)$	$2.770(2)$	$178(3)$
N4-H1N N O2	$0.97(3)$	$1.93(3)$	$2.898(2)$	$166(3)$
N4-H2N $\cdots \mathrm{O}^{\mathrm{i}}$	$0.87(4)$	$2.18(4)$	$3.043(2)$	$173(3)$

Symmetry code: (i) $x, y, z+1$.

