supplementary materials


rz5062 scheme

Acta Cryst. (2013). E69, o844    [ doi:10.1107/S1600536813012026 ]

3-Amino-5,6-dimethyl-1,2,4-triazin-2-ium nitrate

S. Bel Haj Salah, M. L. Mrad, V. Ferretti, F. Lefebvre and C. Ben Nasr

Abstract top

In the title compound, C5H9N4+·NO3-, the organic cations and the nitrate anions have both crystallographically imposed mirror symmetry and are linked via N-H...O hydrogen bonds, forming infinite chains running along the c-axis direction. The values of the N-O bond lengths [1.2256 (19)-1.2642 (18) Å] and O-N-O angles [118.39 (16)-121.64 (15)°] indicate that the nitrate anion exhibits a slightly distorted C3h geometry. The N atom of the NH2 group has sp2 character.

Comment top

The blending of the organic and inorganic components in the hybrid materials allows to the development of compounds having novel properties (Benali-Cherif et al., 2007; Messai et al., 2009). Among these materials, salts of amines attracted more attention due to their potential importance (Jayaraman et al., 2002; Steiner et al., 2002). As a contribution to the study of this compound family, we report in this work the synthesis and the crystal structure of a new organic cation nitrate C5H9N4+.NO3- (I).

The molecular structure of the title compound, as well as the atomic numbering scheme employed, are illustrated in Fig. 1. One 3-amino-5,6-dimethyl-1,2,4-triazinium cation and one discrete nitrate anion, both having crystallographically imposed mirror symmetry, comprise the asymmetric unit. The protonated N3 triazine nitrogen atom is involved in a positive charge assisted N—H···O hydrogen bond (N···O = 2.770 (2) Å) with a neighboring NO3- anion (Gilli et al., 1994). The NH2 unit of the cation cooperates in two N—H···O hydrogen bonds (N···O = 2.898 (2) and 3.043 (2) Å) with two neighboring nitrate anions. These hydrogen bonds link the organic entities and the nitrate anions to form infinite chains running along the c-axis direction (Table 1; Fig.2) and situated at x = n/2 and y ~ n +/- 1/4. Examination of the organic cation geometry shows that the N4–C1 distance of 1.318 (2) Å, which is of the same order of magnitude than the N–C bond of the triazine ring, clearly indicates that the N4 atom has a sp2 character. This is well confirmed by the sum of the angles around N4 equal to 360.0 (2)°. The value of the C1—N3—N2 angle [123.48 (13)°] is larger than that of the C2—N2—N3 angle [116.81 (14) °], which is consistent with the protonation of the N3 nitrogen atom (Boenigk & Mootz, 1988; Jin et al., 2001). No π···π stacking interactions between the organic rings or C—H···π interactions towards them are observed. The geometrical parameters of the nitrate anion are in the normal range. The N—O bond lenghts range from 1.2256 (19) to 1.2642 (18) Å and the O—N—O bond angles range from 118.39 (16) to 121.64 (15) °], showing that the nitrate anion exhibits a slightly distorted C3h geometry. These geometrical features are comparable to those previously reported for the 4-aminopyridinium nitrate salt where the N—O bond distances are in the range 1.2383 (15)–1.2632 (15) Å and the values of the O—N—O bond angles are between 118.42 (12) and 121.80 (13)°. It is worth noting that the N—O distances involving atoms O1 and O2 are longer than the third, involving atom O3. This is probably due to the fact that the later oxygen atom is not acting as acceptor of hydrogen bonding.

Related literature top

For general background to hybrid materials, see: Benali-Cherif et al. (2007); Messai et al. (2009). For the importance of amine salts, see: Jayaraman et al. (2002); Steiner (2002). For related structures, see: Gilli et al. (1994); Boenigk & Mootz (1988); Jin et al. (2001).

Experimental top

Commercial 3-amino-5,6-dimethyl-1,2,4-triazine (3 mmol) was dissolved in water/nitric acid (50:1 v/v). The resultant mixture was evaporated at room temperature. Crystals of the title compound, which remained stable under normal conditions of temperature and humidity, were isolated after several days and subjected to X-ray diffraction analysis (yield 58%).

Refinement top

Refinement was performed on F2 by full-matrix least-squares methods with all non-hydrogen atoms anisotropic. All H atoms were found in a difference Fourier map and refined isotropically.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. Interionic hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed down the b axis, showing the chains formed between the nitrate anions and the organic cations. Hydrogen bonds are shown as dotted lines.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed along the c axis.
3-Amino-5,6-dimethyl-1,2,4-triazin-2-ium nitrate top
Crystal data top
C5H9N4+·NO3F(000) = 392
Mr = 187.17Dx = 1.460 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2321 reflections
a = 19.7213 (2) Åθ = 2.0–30.0°
b = 6.4245 (2) ŵ = 0.12 mm1
c = 6.7197 (6) ÅT = 295 K
V = 851.38 (8) Å3Rod, colourless
Z = 40.32 × 0.18 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
1031 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 30.0°, θmin = 3.8°
φ scans and ω scansh = 2727
2321 measured reflectionsk = 88
1326 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: difference Fourier map
wR(F2) = 0.161All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.1038P)2 + 0.061P]
where P = (Fo2 + 2Fc2)/3
1326 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C5H9N4+·NO3V = 851.38 (8) Å3
Mr = 187.17Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 19.7213 (2) ŵ = 0.12 mm1
b = 6.4245 (2) ÅT = 295 K
c = 6.7197 (6) Å0.32 × 0.18 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
1031 reflections with I > 2σ(I)
2321 measured reflectionsRint = 0.014
1326 independent reflectionsθmax = 30.0°
Refinement top
R[F2 > 2σ(F2)] = 0.049All H-atom parameters refined
wR(F2) = 0.161Δρmax = 0.24 e Å3
S = 1.04Δρmin = 0.23 e Å3
1326 reflectionsAbsolute structure: ?
102 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07155 (6)0.25000.1964 (2)0.0634 (4)
O20.15520 (7)0.25000.0121 (2)0.0705 (5)
O30.17374 (7)0.25000.3030 (2)0.0767 (5)
N10.04674 (7)0.25000.4549 (2)0.0477 (4)
N20.08600 (8)0.25000.0580 (2)0.0520 (4)
N30.02034 (7)0.25000.11531 (19)0.0478 (4)
N40.06438 (7)0.25000.3511 (2)0.0562 (4)
N50.13454 (7)0.25000.1615 (2)0.0519 (4)
C10.00063 (7)0.25000.3055 (2)0.0419 (4)
C20.13126 (8)0.25000.1986 (2)0.0479 (4)
C30.11066 (8)0.25000.4046 (2)0.0462 (4)
C40.20428 (9)0.25000.1392 (4)0.0650 (5)
C50.16177 (11)0.25000.5668 (3)0.0695 (6)
H1N0.1005 (17)0.25000.254 (5)0.100 (9)*
H2N0.0701 (14)0.25000.479 (5)0.083 (8)*
H3N0.0130 (17)0.25000.007 (5)0.086 (7)*
H10.2269 (9)0.133 (3)0.203 (3)0.092 (6)*
H20.206 (3)0.25000.019 (9)0.153 (16)*
H30.1438 (16)0.25000.683 (5)0.102 (10)*
H40.1920 (13)0.130 (3)0.544 (4)0.128 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0410 (6)0.1020 (10)0.0472 (7)0.0000.0003 (5)0.000
O20.0505 (7)0.1173 (12)0.0438 (7)0.0000.0051 (6)0.000
O30.0532 (8)0.1263 (14)0.0506 (8)0.0000.0160 (6)0.000
N10.0417 (7)0.0647 (8)0.0366 (6)0.0000.0006 (5)0.000
N20.0452 (7)0.0729 (9)0.0379 (7)0.0000.0026 (5)0.000
N30.0419 (7)0.0646 (8)0.0369 (6)0.0000.0028 (5)0.000
N40.0405 (7)0.0801 (10)0.0480 (8)0.0000.0019 (6)0.000
N50.0421 (7)0.0695 (9)0.0441 (7)0.0000.0033 (5)0.000
C10.0400 (7)0.0475 (7)0.0381 (7)0.0000.0010 (6)0.000
C20.0421 (7)0.0592 (9)0.0424 (8)0.0000.0024 (6)0.000
C30.0412 (7)0.0583 (8)0.0390 (7)0.0000.0015 (6)0.000
C40.0416 (8)0.0970 (15)0.0564 (11)0.0000.0075 (8)0.000
C50.0474 (9)0.1150 (18)0.0461 (10)0.0000.0072 (8)0.000
Geometric parameters (Å, º) top
O1—N51.2642 (18)N4—H1N0.97 (3)
O2—N51.236 (2)N4—H2N0.87 (4)
O3—N51.2256 (19)C2—C31.443 (2)
N1—C31.305 (2)C2—C41.494 (2)
N1—C11.3547 (19)C3—C51.485 (2)
N2—C21.300 (2)C4—H10.972 (17)
N2—N31.3510 (19)C4—H20.81 (6)
N3—C11.3357 (19)C5—H30.86 (3)
N3—H3N0.98 (4)C5—H40.99 (2)
N4—C11.3183 (19)
C3—N1—C1117.14 (14)N3—C1—N1120.93 (14)
C2—N2—N3116.81 (14)N2—C2—C3120.27 (15)
C1—N3—N2123.48 (13)N2—C2—C4117.90 (16)
C1—N3—H3N121 (2)C3—C2—C4121.83 (15)
N2—N3—H3N116 (2)N1—C3—C2121.37 (14)
C1—N4—H1N124 (2)N1—C3—C5117.75 (16)
C1—N4—H2N111.0 (18)C2—C3—C5120.88 (15)
H1N—N4—H2N125 (2)C2—C4—H1108.9 (11)
O3—N5—O2121.64 (15)C2—C4—H2108 (4)
O3—N5—O1118.39 (16)H1—C4—H2115 (2)
O2—N5—O1119.97 (15)C3—C5—H3113 (2)
N4—C1—N3120.37 (14)C3—C5—H4107.1 (15)
N4—C1—N1118.70 (15)H3—C5—H4113.1 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.98 (4)1.79 (4)2.770 (2)178 (3)
N4—H1N···O20.97 (3)1.93 (3)2.898 (2)166 (3)
N4—H2N···O1i0.87 (4)2.18 (4)3.043 (2)173 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.98 (4)1.79 (4)2.770 (2)178 (3)
N4—H1N···O20.97 (3)1.93 (3)2.898 (2)166 (3)
N4—H2N···O1i0.87 (4)2.18 (4)3.043 (2)173 (3)
Symmetry code: (i) x, y, z+1.
Acknowledgements top

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Benali-Cherif, N., Kateb, A., Boussekine, H., Boutobba, Z. & Messai, A. (2007). Acta Cryst. E63, o3251.

Boenigk, D. & Mootz, D. (1988). J. Am. Chem. Soc. 110, 2135–2139.

Burnett, M. N. & Johnson, C. K. (1996). ORTEP-III, Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909–915.

Jayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413–422.

Jin, Z. M., Pan, Y. J., Hu, M. L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191–195.

Messai, A., Direm, A., Benali-Cherif, N., Luneau, D. & Jeanneau, E. (2009). Acta Cryst. E65, o460.

Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.