organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2-(4-methyl­benzyl­­idene)malonate

aDepartment of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, Alexandria University, PO Box 426, Ibrahimia 21321 Alexandria, Egypt, and cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 28 April 2013; accepted 7 May 2013; online 18 May 2013)

In the mol­ecule of the title compound, C13H14O4, the benzene ring forms dihedral angles of 18.60 (7) and 81.36 (8)° with the two arms of the malonate moiety. The crystal structure features C—H⋯O inter­actions, which form chains running parallel to the b axis.

Related literature

For the biological activity and synthesis of alkyl­idene and aryl­idene malonates, see: Liu et al. (2012[Liu, L., Sarkisian, R., Xu, Z. & Wang, H. (2012). J. Org. Chem. 77, 7693-7699.]); Heydri & Tahamipour (2011[Heydri, R. & Tahamipour, B. (2011). Chem. Lett. 22, 1281-1284.]); Xu & Wang (2011[Xu, Z. & Wang, H. (2011). Synlett, pp. 2907-2912.]); Li et al. (2010[Li, P., Zhao, J., Li, F., Chan, A. S. C. & Kwong, F. Y. (2010). Org. Lett. 12, 5616-5619.], 2011[Li, P., Chan, S. H., Chan, A. S. C. & Kwong, F. Y. (2011). Adv. Synth. Catal. 353, 1179-1184.]); Gallier et al. (2009[Gallier, F., Hussain, H., Martel, A., Dujardin, G. & Kirschning, A. (2009). Org. Lett. 11, 3060-3063.]); Besavaiah et al. (2004[Besavaiah, D., Sharada, D. S. & Veerendhar, A. (2004). Tetrahedron Lett. 45, 3081-3083.]). For the structures of related compounds, see: Rappoport & Gazit (1986[Rappoport, Z. & Gazit, A. (1986). J. Org. Chem. 51, 4107-4111.])

[Scheme 1]

Experimental

Crystal data
  • C13H14O4

  • Mr = 234.24

  • Monoclinic, P 21 /c

  • a = 14.0516 (6) Å

  • b = 7.7446 (3) Å

  • c = 12.5113 (5) Å

  • β = 113.727 (1)°

  • V = 1246.44 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.55 × 0.36 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.985

  • 7125 measured reflections

  • 2316 independent reflections

  • 1850 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.136

  • S = 1.08

  • 2316 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13C⋯O1i 0.96 2.49 3.442 (3) 170
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Alkylidene and arylidene malonates have attracted the attention of organic and medicinal chemists as building blocks of many organic compounds with diverse biological activities. Due to their distinct structural features, these compounds serve as precursors for Michael addition in multiple reactions, such as Aza-Michael addition, Mukaiyama-Michael reaction and Friedel-Crafts reactions (Liu et al., 2012; Heydri & Tahamipour, 2011; Xu & Wang, 2011; Li et al., 2010; Gallier et al., 2009). Particularly they are utilized for the synthesis of trisubstituted alkenes via Knoevenagel condensation (Li et al., 2011). These trisubstitued alkenes in turn can be useful for the preparation of various biologically active molecules (Besavaiah et al., 2004).

The structure of title compound, C13H14O4, is composed of a dimethyl malonate (O1–O4/C8–C12) substituted benzylidene ring (C1–C7) (Fig. 1). The benzene ring forms dihedral angles of 18.60 (7) and 81.36 (8)° with the C9/C10/O1/O2 and C11/C12/O3/O4 side chains of malonate. In the crystal, the structure is stabilized via C13—H13C···O1 intermolecular interactions (Table 1) forming chains running parallel to the b axis (Fig. 2). All bond lengths and angles were found to be similar to those observed in other structurally related compounds (Rappoport & Gazit 1986).

Related literature top

For the biological activity and synthesis of alkylidene and arylidene malonates, see: Liu et al. (2012); Heydri & Tahamipour (2011); Xu & Wang (2011); Li et al. (2010, 2011); Gallier et al. (2009); Besavaiah et al. (2004). For the structures of related compounds, see: Rappoport & Gazit (1986)

Experimental top

To a 150 ml flame-dried round-bottom flask, equipped with a magnetic stir bar and fitted with a Dean-Stark apparatus, was added benzene (25 ml), toluene aldehyde (1.44 g, 12 mmol), piperidine (11 µL, 0.12 mmol), acetic acid (7 µL, 0.12 mmol), and dimethyl malonate (1.72 g, 13 mmol) under an argon atmosphere. The reaction mixture was allowed to reflux for 24 h. The reaction progress was monitored by 1H-NMR spectroscopy. After completion of the reaction, the reaction mixture was diluted with ethyl acetate (50 ml) and extracted with water (2 × 25 ml) and brine (1 × 25 ml) and dried over Na2SO4 to obtain the crude alkylidene malonate. Flash column chromatography (petroleum ether/ethyl acetate, 95:5 v/v) afforded a solution of the title compound as a clear liquid. On standing for 2 days at room temperature, cube-like crystals (2.67 g, 11.4 mmol, 95° yield) were obtained. M. p. 331 K. All chemicals were purchased from Sigma- Aldrich.

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.96 Å and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq (C) or 1.5Ueq (C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the c axis. Only hydrogen atoms involved in hydrogen bonding (dashed lines) are shown.
Dimethyl 2-(4-methylbenzylidene)malonate top
Crystal data top
C13H14O4F(000) = 496
Mr = 234.24Dx = 1.248 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2372 reflections
a = 14.0516 (6) Åθ = 3.1–26.3°
b = 7.7446 (3) ŵ = 0.09 mm1
c = 12.5113 (5) ÅT = 273 K
β = 113.727 (1)°Block, colourless
V = 1246.44 (9) Å30.55 × 0.36 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2316 independent reflections
Radiation source: fine-focus sealed tube1850 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scanθmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1711
Tmin = 0.951, Tmax = 0.985k = 99
7125 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.2125P]
where P = (Fo2 + 2Fc2)/3
2316 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C13H14O4V = 1246.44 (9) Å3
Mr = 234.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0516 (6) ŵ = 0.09 mm1
b = 7.7446 (3) ÅT = 273 K
c = 12.5113 (5) Å0.55 × 0.36 × 0.16 mm
β = 113.727 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2316 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1850 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.985Rint = 0.021
7125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.08Δρmax = 0.20 e Å3
2316 reflectionsΔρmin = 0.17 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15387 (12)0.05063 (19)0.26275 (14)0.0835 (5)
O20.03912 (10)0.15029 (16)0.16332 (11)0.0631 (4)
O30.10137 (11)0.30017 (18)0.02578 (11)0.0775 (5)
O40.19102 (10)0.45753 (15)0.13086 (11)0.0621 (4)
C10.36456 (14)0.2423 (2)0.04658 (15)0.0594 (5)
H1A0.29960.28970.00270.071*
C20.44558 (15)0.2730 (2)0.01473 (16)0.0635 (5)
H2A0.43400.34050.05080.076*
C30.54418 (14)0.2067 (2)0.07690 (16)0.0589 (5)
C40.55784 (15)0.1057 (3)0.17338 (17)0.0649 (5)
H4A0.62300.05920.21720.078*
C50.47681 (15)0.0728 (2)0.20574 (16)0.0607 (5)
H5A0.48830.00340.27040.073*
C60.37811 (13)0.1409 (2)0.14407 (14)0.0521 (4)
C70.29555 (14)0.0931 (2)0.18075 (14)0.0540 (4)
H7A0.31160.00010.23210.065*
C80.20104 (13)0.1592 (2)0.15361 (14)0.0517 (4)
C90.13063 (14)0.0737 (2)0.20022 (15)0.0555 (4)
C100.03757 (16)0.0739 (3)0.19883 (19)0.0683 (5)
H10A0.10050.14050.16770.103*
H10B0.01140.07260.28250.103*
H10C0.05170.04220.16980.103*
C110.15819 (13)0.3100 (2)0.07484 (14)0.0512 (4)
C120.15580 (17)0.6132 (2)0.0614 (2)0.0775 (6)
H12A0.18390.71250.10980.116*
H12B0.08130.61810.02950.116*
H12C0.17900.61200.00110.116*
C130.63181 (16)0.2386 (3)0.03988 (19)0.0766 (6)
H13A0.60810.31130.02800.115*
H13B0.65540.13050.02190.115*
H13C0.68800.29430.10210.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0768 (10)0.0778 (10)0.1055 (11)0.0191 (8)0.0467 (8)0.0389 (8)
O20.0565 (8)0.0567 (7)0.0771 (8)0.0059 (6)0.0280 (6)0.0078 (6)
O30.0810 (10)0.0704 (9)0.0579 (8)0.0043 (7)0.0039 (7)0.0042 (6)
O40.0622 (8)0.0465 (7)0.0703 (8)0.0023 (6)0.0191 (6)0.0000 (5)
C10.0510 (10)0.0607 (11)0.0617 (10)0.0083 (8)0.0176 (8)0.0066 (8)
C20.0654 (12)0.0638 (12)0.0616 (10)0.0018 (9)0.0260 (9)0.0032 (9)
C30.0556 (10)0.0563 (10)0.0629 (10)0.0051 (8)0.0218 (8)0.0171 (8)
C40.0476 (10)0.0688 (12)0.0669 (11)0.0076 (9)0.0111 (8)0.0072 (9)
C50.0561 (11)0.0598 (11)0.0582 (10)0.0083 (9)0.0148 (8)0.0043 (8)
C60.0517 (10)0.0460 (9)0.0531 (9)0.0034 (7)0.0154 (7)0.0030 (7)
C70.0561 (11)0.0482 (9)0.0529 (9)0.0039 (8)0.0169 (8)0.0051 (7)
C80.0525 (10)0.0454 (9)0.0524 (9)0.0017 (7)0.0161 (7)0.0002 (7)
C90.0584 (11)0.0488 (10)0.0579 (10)0.0051 (8)0.0220 (8)0.0023 (8)
C100.0605 (11)0.0678 (12)0.0826 (13)0.0028 (10)0.0349 (10)0.0023 (10)
C110.0438 (9)0.0518 (10)0.0551 (9)0.0020 (7)0.0170 (7)0.0010 (7)
C120.0783 (14)0.0483 (11)0.1068 (16)0.0099 (10)0.0383 (13)0.0147 (10)
C130.0645 (12)0.0831 (14)0.0874 (14)0.0078 (11)0.0359 (11)0.0216 (11)
Geometric parameters (Å, º) top
O1—C91.200 (2)C5—H5A0.9300
O2—C91.319 (2)C6—C71.457 (2)
O2—C101.447 (2)C7—C81.334 (2)
O3—C111.1913 (19)C7—H7A0.9300
O4—C111.3226 (19)C8—C111.490 (2)
O4—C121.452 (2)C8—C91.491 (2)
C1—C21.370 (3)C10—H10A0.9600
C1—C61.398 (2)C10—H10B0.9600
C1—H1A0.9300C10—H10C0.9600
C2—C31.386 (3)C12—H12A0.9600
C2—H2A0.9300C12—H12B0.9600
C3—C41.385 (3)C12—H12C0.9600
C3—C131.500 (3)C13—H13A0.9600
C4—C51.377 (3)C13—H13B0.9600
C4—H4A0.9300C13—H13C0.9600
C5—C61.391 (2)
C9—O2—C10116.73 (15)C11—C8—C9116.87 (15)
C11—O4—C12115.97 (14)O1—C9—O2124.07 (17)
C2—C1—C6120.92 (16)O1—C9—C8124.21 (16)
C2—C1—H1A119.5O2—C9—C8111.71 (15)
C6—C1—H1A119.5O2—C10—H10A109.5
C1—C2—C3122.19 (18)O2—C10—H10B109.5
C1—C2—H2A118.9H10A—C10—H10B109.5
C3—C2—H2A118.9O2—C10—H10C109.5
C4—C3—C2117.06 (18)H10A—C10—H10C109.5
C4—C3—C13121.26 (18)H10B—C10—H10C109.5
C2—C3—C13121.67 (18)O3—C11—O4123.90 (16)
C5—C4—C3121.31 (17)O3—C11—C8124.73 (16)
C5—C4—H4A119.3O4—C11—C8111.37 (14)
C3—C4—H4A119.3O4—C12—H12A109.5
C4—C5—C6121.63 (18)O4—C12—H12B109.5
C4—C5—H5A119.2H12A—C12—H12B109.5
C6—C5—H5A119.2O4—C12—H12C109.5
C5—C6—C1116.89 (17)H12A—C12—H12C109.5
C5—C6—C7118.11 (16)H12B—C12—H12C109.5
C1—C6—C7124.87 (15)C3—C13—H13A109.5
C8—C7—C6131.27 (16)C3—C13—H13B109.5
C8—C7—H7A114.4H13A—C13—H13B109.5
C6—C7—H7A114.4C3—C13—H13C109.5
C7—C8—C11124.44 (16)H13A—C13—H13C109.5
C7—C8—C9118.63 (15)H13B—C13—H13C109.5
C6—C1—C2—C30.3 (3)C6—C7—C8—C9176.17 (16)
C1—C2—C3—C40.5 (3)C10—O2—C9—O12.0 (3)
C1—C2—C3—C13178.91 (17)C10—O2—C9—C8177.38 (14)
C2—C3—C4—C50.1 (3)C7—C8—C9—O11.2 (3)
C13—C3—C4—C5178.38 (17)C11—C8—C9—O1178.61 (17)
C3—C4—C5—C60.8 (3)C7—C8—C9—O2178.12 (15)
C4—C5—C6—C10.9 (3)C11—C8—C9—O20.7 (2)
C4—C5—C6—C7177.10 (16)C12—O4—C11—O31.6 (3)
C2—C1—C6—C50.4 (3)C12—O4—C11—C8178.58 (14)
C2—C1—C6—C7176.28 (17)C7—C8—C11—O398.3 (2)
C5—C6—C7—C8166.38 (18)C9—C8—C11—O378.9 (2)
C1—C6—C7—C817.8 (3)C7—C8—C11—O481.9 (2)
C6—C7—C8—C111.0 (3)C9—C8—C11—O4100.88 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···O1i0.962.493.442 (3)170
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H14O4
Mr234.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)14.0516 (6), 7.7446 (3), 12.5113 (5)
β (°) 113.727 (1)
V3)1246.44 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.55 × 0.36 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.951, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7125, 2316, 1850
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.08
No. of reflections2316
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···O1i0.96002.49003.442 (3)170.00
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: ambarakat@ksu.edu.sa.

Acknowledgements

This project was supported by the King Saud University, Deanship of Scientific Research, College of Science Research Center.

References

First citationBesavaiah, D., Sharada, D. S. & Veerendhar, A. (2004). Tetrahedron Lett. 45, 3081–3083.  Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGallier, F., Hussain, H., Martel, A., Dujardin, G. & Kirschning, A. (2009). Org. Lett. 11, 3060–3063.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHeydri, R. & Tahamipour, B. (2011). Chem. Lett. 22, 1281–1284.  Google Scholar
First citationLi, P., Chan, S. H., Chan, A. S. C. & Kwong, F. Y. (2011). Adv. Synth. Catal. 353, 1179–1184.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, P., Zhao, J., Li, F., Chan, A. S. C. & Kwong, F. Y. (2010). Org. Lett. 12, 5616–5619.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, L., Sarkisian, R., Xu, Z. & Wang, H. (2012). J. Org. Chem. 77, 7693–7699.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRappoport, Z. & Gazit, A. (1986). J. Org. Chem. 51, 4107–4111.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z. & Wang, H. (2011). Synlett, pp. 2907–2912.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds