supplementary materials


sj5312 scheme

Acta Cryst. (2013). E69, o825-o826    [ doi:10.1107/S1600536813011501 ]

Methyl 5''-chloro-1',1''-dimethyl-2,2''-dioxodispiro[indoline-3,2'-pyrrolidine-3',3''-indoline]-4'-carboxylate

P. S. Kannan, P. S. Yuvaraj, K. Manivannan, B. S. R. Reddy and A. SubbiahPandi

Abstract top

In the title compound, C22H20ClN3O4, the central pyrrolidine ring adopts an envelope conformation on the N atom. The indolinone systems are individually roughly planar, with maximum deviations from their mean planes of 0.130 Å for the spiro C atom of the indolinone unit and 0.172 Å for the carbonyl C atom of the 5-chloro-1-methylindolinone unit. They make dihedral angles of 77.7 (8) and 86.1 (8)° with the mean plane through the central pyrrolidine ring. In the crystal, molecules are linked by N-H...O hydrogen bonds supported by C-H...O contacts into chains along the ab diagonal. The structure also features C-H...O hydrogen bonds, forming R22(8) and R22(16) rings and generating a three-dimensional array.

Comment top

Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2A) receptor antagonists (Obniska et al., 2003; Peddi et al., 2004). These derivatives possess anticonvulsant (Kaminski & Obniska, 2008) and anti-influenza virus (Stylianakis et al., 2003) activities. Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have also been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991).

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometries of the pyrrolidine and indole systems are comparable with those in related structures (Wei et al., 2011; Ganesh et al., 2012). The sum of the angles at N2 [336.9 (1)°] of the pyrrolidine rings is typical of sp3 hybridization. The indoline ring systems [N1/C1-C8 and N3/C12-C19] make dihedral angles of 77.7 (8) ° and 86.1(68° with respect to the mean plane of the central pyrrolidine ring system [N2/C7/C9/C10/C12]. This clearly shows that the indoline ring (N3/C12-C19) and the central pyrrolidine ring system are almost perpendicular to one another. The indole ring systems are essentially planar, with maximum deviations from the mean planes of 0.130 Å for the C12 and -0.172 Å for the C8 atoms, respectively.

The central pyrrolidine ring adopts an envelope conformation on the N2 atom, with puckering parameters q2 = 0.419 (2) Å, φ = 1.555 (2)(Cremer & Pople, 1975 ). The pyrrolidine ring in the chloro-indole ring system adopts a twisted conformation on the C7 and C8 atoms, with puckering parameters of q2 = 0.124 (2) Å, φ = 306.8 (7). The pyrrolidine ring in the indole ring system adopts an envelope conformation on the C12 atom, with puckering parameters q2 = 0.113 (2) Å, φ = 251.6 (9).

In the crystal, six hydrogen bonds formed by each molecule. These include the formation of three inversion related contacts and atom O3 acting as a trifurcated acceptor. The molecules are stabilized by intermolecular C–H···O hydrogen bonds forming R22(8)rings from C9-H9···O3, contacts (Bernstein et al., 1995) while C5–H5···O3 contacts and C22-H22B···O3, H bonds generate R22(16) rings resulting in a three dimensional array Figure 2.

Related literature top

For the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2003); Peddi et al. (2004); Kaminski & Obniska (2008); Stylianakis et al. (2003); Waldmann (1995). For the use of optically active pyrrolidines as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis, see: Suzuki et al. (1994); Huryn et al. (1991). For related structures, see: Ganesh et al. (2012); Wei et al. (2011). For puckering parameters, see: Cremer & Pople (1975) and for hydrogen-bond motifs see Bernstein et al. (1995).

Experimental top

A mixture of 1 equivalent of (E)-methyl 2-(5-chloro-1-methyl-2-oxoindolin-3-ylidene) acetate, 1 equivalent of isatin, 1H-indole-2,3-dione, and 1.5 equivalent of sarcosine, N-methylglycine were dissolved in acetonitrile. This reaction mixture was refluxed at 80°C for 8 hours. Progress of the reaction was monitored by thin layer chromatography. The product was dried and purified by column chromatography using ethyl acetate and hexane (1:9) as eluent to afford the title compound. (Yield = 90%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethyl acetate at room temperature.

Refinement top

The H atom bound to N3 was located in a difference Fourier map and its coordinates and atomic displacement parameter were refined freely. All H atoms bound to C were fixed geometrically and allowed to ride on their parent atoms, with C—H distances fixed in the range 0.93–0.97 Å and with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing viewed along a. Dashed lines show the intermolecular N–H···O and C–H···O hydrogen bonds.
Methyl 5''-chloro-1',1''-dimethyl-2,2''-dioxodispiro[indoline-3,2'-pyrrolidine-3',3''-indoline]-4'-carboxylate top
Crystal data top
C22H20ClN3O4F(000) = 888
Mr = 425.86Dx = 1.394 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5021 reflections
a = 9.2543 (4) Åθ = 2.0–28.3°
b = 18.1387 (7) ŵ = 0.22 mm1
c = 12.5147 (5) ÅT = 293 K
β = 105.026 (2)°Block, colourless
V = 2028.90 (14) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area detector
diffractometer
5021 independent reflections
Radiation source: fine-focus sealed tube3789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and φ scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.936, Tmax = 0.957k = 2424
18586 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.6292P]
where P = (Fo2 + 2Fc2)/3
5021 reflections(Δ/σ)max < 0.001
278 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C22H20ClN3O4V = 2028.90 (14) Å3
Mr = 425.86Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2543 (4) ŵ = 0.22 mm1
b = 18.1387 (7) ÅT = 293 K
c = 12.5147 (5) Å0.30 × 0.25 × 0.20 mm
β = 105.026 (2)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
5021 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3789 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.957Rint = 0.030
18586 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125Δρmax = 0.33 e Å3
S = 1.06Δρmin = 0.21 e Å3
5021 reflectionsAbsolute structure: ?
278 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59371 (19)0.05207 (9)0.28439 (13)0.0423 (4)
C20.45435 (17)0.08424 (8)0.24338 (12)0.0358 (3)
H20.38910.09080.28800.043*
C30.41592 (15)0.10629 (8)0.13379 (12)0.0301 (3)
C40.51723 (16)0.09636 (8)0.06936 (12)0.0334 (3)
C50.65753 (18)0.06619 (10)0.11172 (15)0.0446 (4)
H50.72470.06120.06830.053*
C60.69446 (19)0.04367 (10)0.22136 (16)0.0486 (4)
H60.78770.02280.25250.058*
C70.27545 (15)0.14084 (8)0.06175 (11)0.0294 (3)
C80.30532 (17)0.13446 (8)0.05324 (12)0.0340 (3)
C90.11746 (16)0.10891 (9)0.05792 (13)0.0365 (3)
H90.07260.09540.01940.044*
C100.02656 (18)0.17386 (9)0.08235 (17)0.0473 (4)
H10A0.07770.16980.04170.057*
H10B0.03310.17750.16080.057*
C110.0415 (2)0.30826 (11)0.0677 (2)0.0601 (5)
H11A0.05510.31340.14600.090*
H11B0.06310.31170.03080.090*
H11C0.09490.34670.04170.090*
C120.25861 (16)0.22640 (8)0.08568 (12)0.0319 (3)
C130.32532 (18)0.24031 (8)0.21214 (13)0.0361 (3)
C140.47566 (18)0.30011 (8)0.12068 (13)0.0362 (3)
C150.5915 (2)0.34053 (11)0.09938 (15)0.0489 (4)
H150.67220.35570.15630.059*
C160.5830 (2)0.35771 (11)0.00992 (16)0.0536 (5)
H160.66090.38370.02670.064*
C170.4617 (2)0.33718 (11)0.09432 (15)0.0507 (4)
H170.45720.35080.16680.061*
C180.3457 (2)0.29619 (9)0.07182 (14)0.0426 (4)
H180.26300.28280.12840.051*
C190.35598 (16)0.27576 (8)0.03628 (12)0.0333 (3)
C200.12538 (16)0.03924 (9)0.12354 (14)0.0397 (4)
C210.1033 (3)0.01945 (12)0.2852 (2)0.0683 (6)
H21A0.03310.05560.24670.102*
H21B0.08280.00820.35480.102*
H21C0.20300.03850.29800.102*
C220.5254 (2)0.11715 (12)0.12913 (15)0.0528 (5)
H22A0.45330.12650.19820.079*
H22B0.57170.07010.13220.079*
H22C0.60040.15500.11580.079*
N10.45105 (15)0.11694 (7)0.04029 (10)0.0367 (3)
N20.09833 (14)0.23692 (7)0.04428 (12)0.0406 (3)
N30.45486 (16)0.27829 (8)0.22362 (12)0.0406 (3)
O10.21387 (13)0.14407 (7)0.14168 (9)0.0467 (3)
O20.27254 (15)0.22036 (7)0.28633 (10)0.0516 (3)
O30.16251 (15)0.01881 (7)0.09239 (12)0.0535 (3)
O40.08942 (15)0.04712 (7)0.21895 (11)0.0513 (3)
Cl10.63981 (7)0.01829 (3)0.41915 (4)0.07053 (19)
H30.513 (2)0.2916 (11)0.2850 (18)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0456 (9)0.0388 (8)0.0358 (8)0.0052 (7)0.0016 (7)0.0025 (6)
C20.0376 (8)0.0349 (7)0.0336 (8)0.0014 (6)0.0071 (6)0.0003 (6)
C30.0270 (6)0.0294 (7)0.0325 (7)0.0002 (5)0.0053 (5)0.0014 (5)
C40.0305 (7)0.0335 (7)0.0356 (8)0.0014 (6)0.0076 (6)0.0012 (6)
C50.0316 (8)0.0501 (9)0.0524 (10)0.0058 (7)0.0117 (7)0.0023 (8)
C60.0341 (8)0.0506 (10)0.0540 (10)0.0111 (7)0.0014 (7)0.0009 (8)
C70.0263 (7)0.0323 (7)0.0286 (7)0.0005 (5)0.0052 (5)0.0001 (5)
C80.0367 (8)0.0330 (7)0.0310 (7)0.0001 (6)0.0067 (6)0.0023 (6)
C90.0269 (7)0.0396 (8)0.0411 (8)0.0036 (6)0.0054 (6)0.0015 (6)
C100.0304 (8)0.0446 (9)0.0689 (12)0.0030 (7)0.0162 (8)0.0085 (8)
C110.0521 (11)0.0455 (10)0.0865 (15)0.0154 (8)0.0250 (10)0.0088 (10)
C120.0308 (7)0.0327 (7)0.0323 (7)0.0014 (6)0.0082 (6)0.0022 (6)
C130.0410 (8)0.0346 (7)0.0343 (8)0.0038 (6)0.0130 (6)0.0011 (6)
C140.0392 (8)0.0342 (7)0.0354 (8)0.0014 (6)0.0099 (6)0.0026 (6)
C150.0441 (9)0.0532 (10)0.0481 (10)0.0141 (8)0.0093 (8)0.0031 (8)
C160.0530 (11)0.0557 (11)0.0569 (11)0.0133 (8)0.0231 (9)0.0038 (9)
C170.0635 (11)0.0524 (10)0.0403 (9)0.0060 (9)0.0206 (8)0.0075 (8)
C180.0465 (9)0.0432 (9)0.0353 (8)0.0043 (7)0.0057 (7)0.0043 (7)
C190.0350 (7)0.0313 (7)0.0340 (7)0.0006 (6)0.0100 (6)0.0004 (6)
C200.0264 (7)0.0416 (8)0.0490 (9)0.0062 (6)0.0059 (6)0.0003 (7)
C210.0829 (16)0.0602 (13)0.0651 (14)0.0020 (11)0.0252 (12)0.0181 (10)
C220.0556 (11)0.0664 (12)0.0441 (10)0.0031 (9)0.0265 (8)0.0001 (8)
N10.0373 (7)0.0425 (7)0.0319 (6)0.0029 (5)0.0122 (5)0.0009 (5)
N20.0295 (6)0.0379 (7)0.0538 (8)0.0059 (5)0.0096 (6)0.0070 (6)
N30.0455 (8)0.0442 (8)0.0300 (7)0.0070 (6)0.0060 (6)0.0053 (6)
O10.0484 (7)0.0567 (7)0.0291 (6)0.0048 (6)0.0004 (5)0.0010 (5)
O20.0606 (8)0.0612 (8)0.0394 (6)0.0015 (6)0.0243 (6)0.0023 (6)
O30.0497 (7)0.0394 (7)0.0746 (9)0.0012 (5)0.0218 (7)0.0042 (6)
O40.0610 (8)0.0437 (7)0.0529 (7)0.0004 (6)0.0213 (6)0.0059 (6)
Cl10.0869 (4)0.0727 (4)0.0425 (3)0.0259 (3)0.0003 (2)0.0164 (2)
Geometric parameters (Å, º) top
C1—C61.377 (3)C12—N21.4514 (18)
C1—C21.387 (2)C12—C191.511 (2)
C1—Cl11.7403 (17)C12—C131.563 (2)
C2—C31.384 (2)C13—O21.2110 (19)
C2—H20.9300C13—N31.358 (2)
C3—C41.398 (2)C14—C151.381 (2)
C3—C71.5125 (19)C14—C191.390 (2)
C4—C51.382 (2)C14—N31.408 (2)
C4—N11.401 (2)C15—C161.385 (3)
C5—C61.387 (3)C15—H150.9300
C5—H50.9300C16—C171.378 (3)
C6—H60.9300C16—H160.9300
C7—C81.539 (2)C17—C181.393 (2)
C7—C91.5617 (19)C17—H170.9300
C7—C121.596 (2)C18—C191.382 (2)
C8—O11.2190 (18)C18—H180.9300
C8—N11.354 (2)C20—O31.203 (2)
C9—C201.499 (2)C20—O41.328 (2)
C9—C101.524 (2)C21—O41.452 (2)
C9—H90.9800C21—H21A0.9600
C10—N21.463 (2)C21—H21B0.9600
C10—H10A0.9700C21—H21C0.9600
C10—H10B0.9700C22—N11.451 (2)
C11—N21.455 (2)C22—H22A0.9600
C11—H11A0.9600C22—H22B0.9600
C11—H11B0.9600C22—H22C0.9600
C11—H11C0.9600N3—H30.85 (2)
C6—C1—C2122.50 (15)C19—C12—C7113.69 (12)
C6—C1—Cl1118.94 (13)C13—C12—C7108.35 (11)
C2—C1—Cl1118.52 (14)O2—C13—N3126.24 (15)
C3—C2—C1117.63 (15)O2—C13—C12126.59 (15)
C3—C2—H2121.2N3—C13—C12107.17 (13)
C1—C2—H2121.2C15—C14—C19121.86 (15)
C2—C3—C4119.74 (13)C15—C14—N3128.56 (15)
C2—C3—C7132.13 (13)C19—C14—N3109.57 (13)
C4—C3—C7108.12 (12)C14—C15—C16117.50 (16)
C5—C4—C3122.27 (14)C14—C15—H15121.2
C5—C4—N1127.60 (14)C16—C15—H15121.2
C3—C4—N1110.03 (13)C17—C16—C15121.52 (17)
C4—C5—C6117.53 (15)C17—C16—H16119.2
C4—C5—H5121.2C15—C16—H16119.2
C6—C5—H5121.2C16—C17—C18120.42 (16)
C1—C6—C5120.29 (15)C16—C17—H17119.8
C1—C6—H6119.9C18—C17—H17119.8
C5—C6—H6119.9C19—C18—C17118.67 (16)
C3—C7—C8101.03 (11)C19—C18—H18120.7
C3—C7—C9121.19 (12)C17—C18—H18120.7
C8—C7—C9109.70 (12)C18—C19—C14119.87 (14)
C3—C7—C12113.69 (11)C18—C19—C12131.46 (14)
C8—C7—C12107.37 (11)C14—C19—C12108.64 (13)
C9—C7—C12103.31 (11)O3—C20—O4123.00 (16)
O1—C8—N1125.30 (14)O3—C20—C9122.54 (16)
O1—C8—C7126.00 (14)O4—C20—C9114.46 (14)
N1—C8—C7108.70 (12)O4—C21—H21A109.5
C20—C9—C10119.54 (14)O4—C21—H21B109.5
C20—C9—C7112.55 (12)H21A—C21—H21B109.5
C10—C9—C7105.56 (12)O4—C21—H21C109.5
C20—C9—H9106.1H21A—C21—H21C109.5
C10—C9—H9106.1H21B—C21—H21C109.5
C7—C9—H9106.1N1—C22—H22A109.5
N2—C10—C9102.60 (13)N1—C22—H22B109.5
N2—C10—H10A111.2H22A—C22—H22B109.5
C9—C10—H10A111.2N1—C22—H22C109.5
N2—C10—H10B111.2H22A—C22—H22C109.5
C9—C10—H10B111.2H22B—C22—H22C109.5
H10A—C10—H10B109.2C8—N1—C4110.42 (12)
N2—C11—H11A109.5C8—N1—C22124.27 (14)
N2—C11—H11B109.5C4—N1—C22125.28 (14)
H11A—C11—H11B109.5C12—N2—C11115.75 (14)
N2—C11—H11C109.5C12—N2—C10106.81 (12)
H11A—C11—H11C109.5C11—N2—C10114.29 (14)
H11B—C11—H11C109.5C13—N3—C14111.86 (14)
N2—C12—C19116.02 (12)C13—N3—H3125.2 (13)
N2—C12—C13116.05 (12)C14—N3—H3122.7 (13)
C19—C12—C13101.40 (12)C20—O4—C21114.76 (15)
N2—C12—C7101.61 (11)
C6—C1—C2—C32.0 (2)C19—C12—C13—N311.00 (15)
Cl1—C1—C2—C3175.78 (11)C7—C12—C13—N3108.91 (13)
C1—C2—C3—C40.6 (2)C19—C14—C15—C161.4 (3)
C1—C2—C3—C7178.34 (15)N3—C14—C15—C16177.23 (17)
C2—C3—C4—C51.2 (2)C14—C15—C16—C171.8 (3)
C7—C3—C4—C5179.57 (14)C15—C16—C17—C182.1 (3)
C2—C3—C4—N1175.27 (13)C16—C17—C18—C190.9 (3)
C7—C3—C4—N13.92 (16)C17—C18—C19—C144.1 (2)
C3—C4—C5—C61.8 (2)C17—C18—C19—C12173.57 (16)
N1—C4—C5—C6174.09 (15)C15—C14—C19—C184.4 (2)
C2—C1—C6—C51.4 (3)N3—C14—C19—C18174.48 (14)
Cl1—C1—C6—C5176.30 (14)C15—C14—C19—C12173.71 (16)
C4—C5—C6—C10.5 (3)N3—C14—C19—C127.39 (17)
C2—C3—C7—C8169.10 (15)N2—C12—C19—C1844.6 (2)
C4—C3—C7—C89.95 (15)C13—C12—C19—C18171.21 (16)
C2—C3—C7—C947.8 (2)C7—C12—C19—C1872.7 (2)
C4—C3—C7—C9131.25 (14)N2—C12—C19—C14137.60 (14)
C2—C3—C7—C1276.21 (19)C13—C12—C19—C1410.95 (15)
C4—C3—C7—C12104.73 (13)C7—C12—C19—C14105.10 (14)
C3—C7—C8—O1167.44 (15)C10—C9—C20—O3161.37 (16)
C9—C7—C8—O138.4 (2)C7—C9—C20—O373.93 (19)
C12—C7—C8—O173.23 (18)C10—C9—C20—O419.2 (2)
C3—C7—C8—N113.09 (15)C7—C9—C20—O4105.49 (15)
C9—C7—C8—N1142.15 (13)O1—C8—N1—C4168.84 (15)
C12—C7—C8—N1106.24 (13)C7—C8—N1—C411.68 (16)
C3—C7—C9—C205.1 (2)O1—C8—N1—C229.1 (3)
C8—C7—C9—C20111.93 (14)C7—C8—N1—C22170.33 (15)
C12—C7—C9—C20133.82 (13)C5—C4—N1—C8171.24 (16)
C3—C7—C9—C10126.97 (15)C3—C4—N1—C85.04 (17)
C8—C7—C9—C10116.01 (14)C5—C4—N1—C226.7 (3)
C12—C7—C9—C101.77 (15)C3—C4—N1—C22177.01 (15)
C20—C9—C10—N2154.82 (14)C19—C12—N2—C1164.38 (19)
C7—C9—C10—N226.84 (17)C13—C12—N2—C1154.53 (19)
C3—C7—C12—N2157.26 (12)C7—C12—N2—C11171.79 (14)
C8—C7—C12—N291.88 (13)C19—C12—N2—C10167.10 (14)
C9—C7—C12—N224.03 (14)C13—C12—N2—C1073.99 (17)
C3—C7—C12—C1977.35 (15)C7—C12—N2—C1043.27 (15)
C8—C7—C12—C1933.51 (15)C9—C10—N2—C1245.11 (17)
C9—C7—C12—C19149.42 (12)C9—C10—N2—C11174.47 (15)
C3—C7—C12—C1334.55 (16)O2—C13—N3—C14173.29 (16)
C8—C7—C12—C13145.41 (12)C12—C13—N3—C147.43 (17)
C9—C7—C12—C1398.68 (13)C15—C14—N3—C13178.58 (17)
N2—C12—C13—O243.1 (2)C19—C14—N3—C130.23 (19)
C19—C12—C13—O2169.72 (16)O3—C20—O4—C212.0 (2)
C7—C12—C13—O270.37 (19)C9—C20—O4—C21177.38 (16)
N2—C12—C13—N3137.63 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.85 (2)2.18 (2)2.9112 (18)143.3 (18)
C15—H15···O1i0.932.463.156 (2)132
C22—H22B···O3ii0.962.563.324 (2)137
C5—H5···O3ii0.932.613.499 (2)160
C9—H9···O3iii0.982.543.224 (2)127
C9—H9···O10.982.422.932 (2)112
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.85 (2)2.18 (2)2.9112 (18)143.3 (18)
C15—H15···O1i0.932.463.156 (2)132.0
C22—H22B···O3ii0.962.563.324 (2)137.1
C5—H5···O3ii0.932.613.499 (2)160.1
C9—H9···O3iii0.982.543.224 (2)126.6
C9—H9···O10.982.422.932 (2)112
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y, z.
Acknowledgements top

The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.

references
References top

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker. (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Ganesh, G., Yuvaraj, P. S., Govindan, E., Reddy, B. S. R. & SubbiahPandi, A. (2012). Acta Cryst. E68, o2902–o2903.

Huryn, D. M., Trost, B. M. & Fleming, I. (1991). C. Org. Synth. 1, 64–74.

Kaminski, K. & Obniska, J. (2008). Acta Pol. Pharm. 65, 457–465.

Obniska, J., Pawlowski, M., Kolaczkowski, M., Czopek, A., Duszyńska, B., Klodzińska, A., Tatarczyńska, E. & Chojnacka-Wójcik, E. (2003). Pol. J. Pharmacol. 55, 553–557.

Peddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279–2283.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703.

Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.

Waldmann, H. (1995). Synlett, pp. 133–141.

Wei, A. C., Ali, M. A., Choon, T. S., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o3125.