supplementary materials


sj5321 scheme

Acta Cryst. (2013). E69, m347-m348    [ doi:10.1107/S1600536813014219 ]

Bis(2,2'-bipyridyl-[kappa]2N,N')(sulfato-[kappa]2O,O')nickel(II) 2.5-hydrate

T. Iskenderov

Abstract top

The title compound, [Ni(SO4)(C10H8N2)2]·2.5H2O, is a nickel(II) complex with a distorted octahedral coordination geometry. The NiII atom is bonded by two O atoms of the bidentate chelating sulfate ligand and the four N atoms of two chelating 2,2'-bipyridine ligands. The Ni-N bond lengths range from 2.059 (3) to 2.075 (3) Å and the Ni-O bond lengths are 2.098 (3) and 2.123 (3) Å. The bipyridyl ligands are both close to planar (r.m.s. deviations of 0.254 and 0.0572 Å) and are almost orthogonal, making a dihedral angle of 82.77 (1)°. In the crystal, the complex and water molecules are connected by O-H...O hydrogen bonds. Interestingly, six water molecules form a chain linking two complex molecules via sulfate O atoms. There are also stacking interactions between the aromatic rings of neighbouring 2,2'-bipyridine ligands with shortest non-covalent contacts of 3.268 (6), 3.393 (6) and 3.435 (5) Å. One of the three unique water molecules shows half-occupation.

Comment top

2,2'-bipyridyl (2,2'-bipy) is a well known neutral bidentate ligand which is widely used in coordination chemistry, in particular, for the preparation of mixed ligand complexes (Fritsky et al., 2004; Kanderal et al., 2005). It is also often used in the synthesis of discrete polynuclear complexes in order to prevent formation of coordination polymers by blocking a certain number of vacant sites in the coordination sphere of a metal ion (Fritsky et al., 2006).

The asymmetric unit of title compound, comprises a neutral monomeric [Ni(SO4)(C10H8N2)2] complex and three solvent water molecules, one of which is present at half occupancy. The six-coordinate nickel(II) complex adopts a distorted octahedral coordination geometry (Fig. 1).The NiII atom is bonded by two O atoms of the bidentate chelating sulfate ligand and four N atoms of the two chelating 2,2'-bipyridine ligands. Each of the bipyridyl ligands is reasonably planar with rms deviations of 0.254Å and 0.0572Å from the best fit meanplanes through the non-hydrogen atoms of the N1,N2 and N3, N4 ligands respectively. The bipyridyl ligands are almost orthogonal [dihedral angle = 82.7 (1)°]. The Ni—N bond distances range from 2.059 (3) to 2.075 (3) Å and the Ni—O bond distances are 2.098 (3) and 2.123 (3) Å and are typical for distorted octahedral NiII complexes with the nitrogen and oxygen donors (Fritsky et al., 1998; Świątek-Kozłowska et al., 2000; Sliva et al., 1997). The N—Ni—N bite angles around the central atom deviate significantly from 90°, [N2–Ni1–N1 = 78.94 (13)°, N3–Ni1–N4 = 79.32 (13)°], which is a consequence of the formation of five-membered chelate rings. The O2—Ni1—O1 bite angle is even smaller at 67.56 (10)° due to the formation of a four-membered chelate ring by the bidentate sulfate anion.

The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2000; Iskenderov et al., 2009; Moroz et al., 2010; Moroz et al., 2012).

In the crystal structure, the [NiSO4(C10H8N2)2] and water molecules are connected by intermolecular O—H···O hydrogen bonding, (Fig. 2) in which the water molecules act as donors while the sulfate anions and water oxygen atoms act as acceptors (Fig. 2). Interestingly, six water molecules form a chain O1W···O2W···O3W···O3W'···O2W'···O1W' linking two complex molecules via the O(4) atoms of the sulfate anions. There are also stacking interactions between the aromatic rings of the 2,2'-bipyridine molecules belonging to the neighboring complex molecules with shortest non-covalent contacts C(12)···C(18) (1-x, 1-y, 1-z) = 3.268 (6)Å; C(11)···C(18) = 3.393 (6)Å and N(3)···C(17) (1-x, 1-y, 1-z) = 3.435 (5) Å (Fig. 2).

Related literature top

For applications of the 2,2'-bipyridyl ligand, see: Fritsky et al. (2004, 2006); Kanderal et al. (2005). For related structures, see: Fritsky et al. (1998, 2000); Moroz et al. (2010, 2012); Sliva et al. (1997); Świątek-Kozłowska et al. (2000); Iskenderov et al. (2009).

Experimental top

Nickel(II) sulfate hexahydrate (0.026 g, 0.1 mmol) was dissolved in methanol (5 ml) and mixed with a solution of 2,2'-bipyridine (0.312 g, 2 mmol) in methanol (5 ml), afterwards the resulting transparent blue solution was left to evaporate in the air at ambient temperature. During 12 h the blue polycrystalline product precipitated from the solution. It was filtered off, washed with diethyl ether and dried in the air. Yield: 85%. Elemental analysis calc. (%) for C20H22N4NiO7S: C 46.09; H 4.25; N 10.75; found: C 47.11; H 4.60; N 10.43.

Refinement top

As the data were collected on an older diffractometer, collection ceased once sufficient reflections had been obtained to adequately solve and refine the structure, hence the number of missing reflections indicated in the B alert. The H2O H atoms of the solvate water molecules were located from the difference Fourier map but constrained to ride on their parent atom, with Uiso = 1.5 Ueq(parent atom). One of the solvate water molecules was refined with an occupancy factor of 0.5 (an attempt to refine the occupancy factor freely converged with a value of 0.5). The C—H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and Uiso = 1.2Ueq(parent atom).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in H-bonds are omitted for clarity.
Bis(2,2'-bipyridyl-κ2N,N')(sulfato-κ2O,O')nickel(II) 2.5-hydrate top
Crystal data top
[Ni(SO4)(C10H8N2)2]·2.5H2OZ = 2
Mr = 512.18F(000) = 530
Triclinic, P1Dx = 1.559 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.045 (2) ÅCell parameters from 1565 reflections
b = 10.393 (2) Åθ = 3.0–25.5°
c = 11.028 (2) ŵ = 1.03 mm1
α = 99.42 (3)°T = 293 K
β = 101.97 (3)°Block, blue
γ = 98.56 (3)°0.32 × 0.22 × 0.11 mm
V = 1091.0 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
3021 independent reflections
Radiation source: fine-focus sealed tube2527 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.030
Detector resolution: 9 pixels mm-1θmax = 26.1°, θmin = 1.9°
profile data from ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.765, Tmax = 0.897l = 1212
3228 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0784P)2 + 0.7731P]
where P = (Fo2 + 2Fc2)/3
3021 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.76 e Å3
12 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Ni(SO4)(C10H8N2)2]·2.5H2Oγ = 98.56 (3)°
Mr = 512.18V = 1091.0 (4) Å3
Triclinic, P1Z = 2
a = 10.045 (2) ÅMo Kα radiation
b = 10.393 (2) ŵ = 1.03 mm1
c = 11.028 (2) ÅT = 293 K
α = 99.42 (3)°0.32 × 0.22 × 0.11 mm
β = 101.97 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3021 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
2527 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.897Rint = 0.030
3228 measured reflectionsθmax = 26.1°
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.76 e Å3
S = 1.07Δρmin = 0.44 e Å3
3021 reflectionsAbsolute structure: ?
301 parametersFlack parameter: ?
12 restraintsRogers parameter: ?
Special details top

Experimental. The H2O H atoms of the solvate water molecules were located from the difference Fourier map but constrained to ride on their parent atom, with Uiso = 1.5 Ueq(parent atom). One of the solvate water molecule was included into refinement with the occupancy factor of 0.5 (as an attempt to refine it with free variation of the occupancy factor resulted in its value of 1/2, and as O3W forms an H-bond with the tranlsational O3W water molecule through the hydrogen atom H1W3 which limits the occupancy of the latter by 1/2). The C—H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and Uiso = 1.2Ueq(parent atom).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.05920 (10)0.23826 (10)0.38907 (9)0.0340 (3)
Ni10.23116 (5)0.29554 (5)0.24003 (4)0.0288 (2)
O10.2111 (3)0.2317 (3)0.4097 (2)0.0345 (6)
O20.0295 (3)0.2855 (3)0.2672 (2)0.0342 (6)
O30.0352 (3)0.3311 (3)0.4914 (3)0.0478 (8)
O40.0214 (3)0.1049 (3)0.3732 (3)0.0548 (9)
O1W0.7471 (4)0.0268 (4)0.4408 (4)0.0751 (11)
H1W10.78390.08940.48950.113*
H2W10.83040.01410.44900.113*
O2W0.5607 (10)0.0896 (10)0.2062 (10)0.225 (4)
H1W20.53950.17990.16200.337*
H2W20.62040.08000.27570.337*
O3W0.482 (2)0.631 (2)0.0491 (18)0.237 (9)0.50
H1W30.50880.55000.00810.356*0.50
H2W30.41200.60300.07160.356*0.50
N10.1856 (3)0.3201 (3)0.0539 (3)0.0354 (8)
N20.2016 (3)0.1024 (3)0.1437 (3)0.0324 (7)
N30.2837 (3)0.4950 (3)0.3228 (3)0.0300 (7)
N40.4444 (3)0.3267 (3)0.2655 (3)0.0312 (7)
C10.1708 (5)0.4330 (4)0.0137 (4)0.0459 (11)
H10.18290.51050.07370.055*
C20.1387 (6)0.4396 (5)0.1111 (4)0.0542 (13)
H20.12790.51980.13530.065*
C30.1227 (5)0.3263 (5)0.2006 (4)0.0475 (11)
H30.10340.32880.28620.057*
C40.1356 (5)0.2089 (4)0.1611 (4)0.0410 (10)
H40.12370.13060.22010.049*
C50.1663 (4)0.2082 (4)0.0339 (4)0.0324 (9)
C60.1766 (4)0.0860 (4)0.0172 (4)0.0313 (9)
C70.1606 (5)0.0371 (4)0.0592 (4)0.0418 (10)
H70.14240.04680.14670.050*
C80.1722 (5)0.1456 (4)0.0033 (4)0.0495 (12)
H80.16140.22960.05300.059*
C90.1998 (5)0.1289 (4)0.1260 (4)0.0465 (11)
H90.20990.20070.16530.056*
C100.2123 (5)0.0038 (4)0.1963 (4)0.0416 (10)
H100.22880.00740.28380.050*
C110.1965 (4)0.5742 (4)0.3500 (4)0.0359 (9)
H110.10290.53740.33450.043*
C120.2385 (4)0.7071 (4)0.3996 (4)0.0401 (10)
H120.17450.75950.41640.048*
C130.3771 (5)0.7620 (4)0.4242 (4)0.0471 (11)
H130.40810.85250.45660.057*
C140.4694 (5)0.6806 (4)0.3999 (4)0.0447 (11)
H140.56380.71520.41740.054*
C150.4197 (4)0.5473 (4)0.3494 (3)0.0327 (9)
C160.5110 (4)0.4517 (4)0.3221 (3)0.0327 (9)
C170.6536 (4)0.4860 (4)0.3560 (4)0.0398 (10)
H170.69720.57250.39540.048*
C180.7305 (5)0.3903 (5)0.3306 (4)0.0470 (11)
H180.82680.41140.35380.056*
C190.6657 (5)0.2657 (5)0.2719 (4)0.0494 (12)
H190.71630.20040.25260.059*
C200.5228 (4)0.2372 (4)0.2410 (4)0.0421 (10)
H200.47870.15100.20100.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0296 (6)0.0366 (6)0.0294 (5)0.0008 (4)0.0026 (4)0.0003 (4)
Ni10.0278 (3)0.0261 (3)0.0256 (3)0.0002 (2)0.0010 (2)0.0033 (2)
O10.0318 (15)0.0384 (15)0.0293 (14)0.0058 (12)0.0018 (12)0.0038 (12)
O20.0278 (14)0.0357 (15)0.0313 (15)0.0009 (12)0.0034 (12)0.0026 (12)
O30.0407 (17)0.063 (2)0.0349 (16)0.0123 (15)0.0082 (13)0.0041 (14)
O40.053 (2)0.0452 (18)0.056 (2)0.0144 (15)0.0058 (16)0.0120 (16)
O1W0.065 (2)0.064 (2)0.103 (3)0.0146 (19)0.017 (2)0.036 (2)
O2W0.204 (7)0.213 (7)0.244 (8)0.038 (6)0.016 (6)0.058 (6)
O3W0.237 (12)0.248 (12)0.222 (12)0.012 (9)0.059 (9)0.057 (9)
N10.0380 (19)0.0312 (18)0.0312 (18)0.0005 (15)0.0042 (15)0.0007 (15)
N20.0331 (18)0.0304 (17)0.0281 (18)0.0024 (14)0.0015 (14)0.0006 (14)
N30.0271 (18)0.0314 (17)0.0264 (17)0.0023 (14)0.0018 (14)0.0000 (13)
N40.0309 (17)0.0341 (18)0.0252 (16)0.0058 (15)0.0036 (14)0.0012 (14)
C10.061 (3)0.036 (2)0.037 (2)0.006 (2)0.005 (2)0.0060 (19)
C20.078 (4)0.039 (3)0.045 (3)0.011 (2)0.011 (3)0.012 (2)
C30.054 (3)0.056 (3)0.031 (2)0.007 (2)0.007 (2)0.012 (2)
C40.047 (3)0.040 (2)0.029 (2)0.004 (2)0.0042 (19)0.0028 (18)
C50.030 (2)0.033 (2)0.029 (2)0.0028 (17)0.0041 (17)0.0027 (17)
C60.026 (2)0.033 (2)0.030 (2)0.0015 (17)0.0029 (16)0.0012 (17)
C70.047 (3)0.039 (2)0.031 (2)0.006 (2)0.0030 (19)0.0060 (18)
C80.060 (3)0.029 (2)0.049 (3)0.002 (2)0.005 (2)0.005 (2)
C90.057 (3)0.031 (2)0.047 (3)0.005 (2)0.006 (2)0.003 (2)
C100.046 (3)0.039 (2)0.035 (2)0.004 (2)0.0043 (19)0.0034 (19)
C110.031 (2)0.036 (2)0.037 (2)0.0028 (18)0.0057 (18)0.0021 (18)
C120.045 (3)0.032 (2)0.041 (2)0.012 (2)0.009 (2)0.0012 (18)
C130.054 (3)0.031 (2)0.046 (3)0.000 (2)0.003 (2)0.0045 (19)
C140.037 (2)0.036 (2)0.046 (3)0.009 (2)0.001 (2)0.004 (2)
C150.034 (2)0.035 (2)0.025 (2)0.0027 (18)0.0016 (17)0.0051 (17)
C160.030 (2)0.040 (2)0.0235 (19)0.0003 (18)0.0037 (16)0.0041 (17)
C170.028 (2)0.048 (3)0.038 (2)0.0006 (19)0.0021 (18)0.007 (2)
C180.029 (2)0.065 (3)0.047 (3)0.009 (2)0.007 (2)0.015 (2)
C190.041 (3)0.063 (3)0.047 (3)0.021 (2)0.011 (2)0.005 (2)
C200.038 (2)0.038 (2)0.046 (3)0.008 (2)0.008 (2)0.004 (2)
Geometric parameters (Å, º) top
S1—O31.445 (3)C3—H30.9300
S1—O41.461 (3)C4—C51.374 (6)
S1—O21.493 (3)C4—H40.9300
S1—O11.509 (3)C5—C61.480 (6)
S1—Ni12.6892 (13)C6—C71.380 (6)
Ni1—N22.059 (3)C7—C81.379 (6)
Ni1—N32.065 (3)C7—H70.9300
Ni1—N42.070 (3)C8—C91.372 (6)
Ni1—N12.075 (3)C8—H80.9300
Ni1—O22.098 (3)C9—C101.374 (6)
Ni1—O12.123 (3)C9—H90.9300
O1W—H1W10.9753C10—H100.9300
O1W—H2W10.8603C11—C121.367 (6)
O2W—H1W20.9549C11—H110.9300
O2W—H2W20.8500C12—C131.376 (6)
O3W—H1W30.9888C12—H120.9300
O3W—H2W30.8245C13—C141.382 (6)
N1—C11.338 (5)C13—H130.9300
N1—C51.347 (5)C14—C151.380 (6)
N2—C101.335 (5)C14—H140.9300
N2—C61.342 (5)C15—C161.485 (6)
N3—C111.334 (5)C16—C171.379 (6)
N3—C151.345 (5)C17—C181.375 (6)
N4—C201.335 (5)C17—H170.9300
N4—C161.352 (5)C18—C191.349 (7)
C1—C21.362 (6)C18—H180.9300
C1—H10.9300C19—C201.379 (6)
C2—C31.372 (7)C19—H190.9300
C2—H20.9300C20—H200.9300
C3—C41.376 (6)
O3—S1—O4112.5 (2)C2—C3—C4118.7 (4)
O3—S1—O2111.38 (18)C2—C3—H3120.6
O4—S1—O2109.64 (17)C4—C3—H3120.6
O3—S1—O1110.62 (17)C5—C4—C3119.5 (4)
O4—S1—O1109.38 (18)C5—C4—H4120.3
O2—S1—O1102.89 (16)C3—C4—H4120.3
O3—S1—Ni1125.58 (14)N1—C5—C4121.7 (4)
O4—S1—Ni1121.92 (15)N1—C5—C6115.0 (3)
O2—S1—Ni150.95 (11)C4—C5—C6123.3 (4)
O1—S1—Ni151.94 (11)N2—C6—C7121.8 (4)
N2—Ni1—N3171.54 (12)N2—C6—C5115.5 (3)
N2—Ni1—N493.94 (13)C7—C6—C5122.7 (4)
N3—Ni1—N479.32 (13)C8—C7—C6118.7 (4)
N2—Ni1—N178.92 (13)C8—C7—H7120.6
N3—Ni1—N196.65 (13)C6—C7—H7120.6
N4—Ni1—N196.66 (13)C9—C8—C7119.6 (4)
N2—Ni1—O296.16 (12)C9—C8—H8120.2
N3—Ni1—O291.51 (12)C7—C8—H8120.2
N4—Ni1—O2164.38 (11)C8—C9—C10118.6 (4)
N1—Ni1—O296.95 (12)C8—C9—H9120.7
N2—Ni1—O191.50 (12)C10—C9—H9120.7
N3—Ni1—O194.73 (12)N2—C10—C9122.6 (4)
N4—Ni1—O1100.34 (12)N2—C10—H10118.7
N1—Ni1—O1161.03 (12)C9—C10—H10118.7
O2—Ni1—O167.57 (10)N3—C11—C12123.0 (4)
N2—Ni1—S194.37 (10)N3—C11—H11118.5
N3—Ni1—S193.99 (9)C12—C11—H11118.5
N4—Ni1—S1133.72 (9)C11—C12—C13118.9 (4)
N1—Ni1—S1129.62 (10)C11—C12—H12120.6
O2—Ni1—S133.54 (7)C13—C12—H12120.6
O1—Ni1—S134.03 (7)C12—C13—C14118.9 (4)
S1—O1—Ni194.03 (13)C12—C13—H13120.5
S1—O2—Ni195.51 (13)C14—C13—H13120.5
H1W1—O1W—H2W189.2C15—C14—C13119.1 (4)
H1W2—O2W—H2W2110.8C15—C14—H14120.4
H1W3—O3W—H2W3104.2C13—C14—H14120.4
C1—N1—C5118.0 (4)N3—C15—C14121.6 (4)
C1—N1—Ni1127.0 (3)N3—C15—C16115.4 (3)
C5—N1—Ni1115.0 (3)C14—C15—C16123.0 (4)
C10—N2—C6118.7 (3)N4—C16—C17122.0 (4)
C10—N2—Ni1125.8 (3)N4—C16—C15115.2 (3)
C6—N2—Ni1115.4 (3)C17—C16—C15122.7 (4)
C11—N3—C15118.5 (3)C18—C17—C16119.0 (4)
C11—N3—Ni1126.4 (3)C18—C17—H17120.5
C15—N3—Ni1115.1 (3)C16—C17—H17120.5
C20—N4—C16117.1 (3)C19—C18—C17119.7 (4)
C20—N4—Ni1127.9 (3)C19—C18—H18120.1
C16—N4—Ni1114.8 (3)C17—C18—H18120.1
N1—C1—C2123.0 (4)C18—C19—C20118.6 (4)
N1—C1—H1118.5C18—C19—H19120.7
C2—C1—H1118.5C20—C19—H19120.7
C1—C2—C3119.1 (4)N4—C20—C19123.5 (4)
C1—C2—H2120.5N4—C20—H20118.2
C3—C2—H2120.5C19—C20—H20118.2
O3—S1—Ni1—N2175.62 (18)N4—Ni1—N3—C151.3 (3)
O4—S1—Ni1—N24.30 (19)N1—Ni1—N3—C1594.2 (3)
O2—S1—Ni1—N294.56 (16)O2—Ni1—N3—C15168.6 (3)
O1—S1—Ni1—N286.20 (16)O1—Ni1—N3—C15101.0 (3)
O3—S1—Ni1—N33.11 (18)S1—Ni1—N3—C15135.1 (3)
O4—S1—Ni1—N3176.96 (18)N2—Ni1—N4—C208.9 (4)
O2—S1—Ni1—N386.71 (16)N3—Ni1—N4—C20176.3 (4)
O1—S1—Ni1—N392.54 (16)N1—Ni1—N4—C2088.2 (3)
O3—S1—Ni1—N475.9 (2)O2—Ni1—N4—C20121.3 (5)
O4—S1—Ni1—N4104.0 (2)O1—Ni1—N4—C2083.3 (3)
O2—S1—Ni1—N4165.74 (18)S1—Ni1—N4—C2091.0 (3)
O1—S1—Ni1—N413.50 (18)N2—Ni1—N4—C16176.2 (3)
O3—S1—Ni1—N1105.1 (2)N3—Ni1—N4—C161.3 (3)
O4—S1—Ni1—N174.9 (2)N1—Ni1—N4—C1696.9 (3)
O2—S1—Ni1—N115.33 (18)O2—Ni1—N4—C1653.6 (5)
O1—S1—Ni1—N1165.43 (17)O1—Ni1—N4—C1691.6 (3)
O3—S1—Ni1—O289.8 (2)S1—Ni1—N4—C1683.9 (3)
O4—S1—Ni1—O290.3 (2)C5—N1—C1—C20.7 (7)
O1—S1—Ni1—O2179.24 (19)Ni1—N1—C1—C2179.1 (4)
O3—S1—Ni1—O189.4 (2)N1—C1—C2—C31.0 (8)
O4—S1—Ni1—O190.5 (2)C1—C2—C3—C41.8 (7)
O2—S1—Ni1—O1179.24 (19)C2—C3—C4—C51.0 (7)
O3—S1—O1—Ni1119.66 (17)C1—N1—C5—C41.6 (6)
O4—S1—O1—Ni1115.88 (17)Ni1—N1—C5—C4179.9 (3)
O2—S1—O1—Ni10.60 (15)C1—N1—C5—C6176.7 (4)
N2—Ni1—O1—S195.60 (15)Ni1—N1—C5—C61.8 (4)
N3—Ni1—O1—S190.14 (14)C3—C4—C5—N10.7 (6)
N4—Ni1—O1—S1170.12 (13)C3—C4—C5—C6177.4 (4)
N1—Ni1—O1—S136.6 (4)C10—N2—C6—C70.6 (6)
O2—Ni1—O1—S10.45 (11)Ni1—N2—C6—C7177.2 (3)
O3—S1—O2—Ni1119.14 (16)C10—N2—C6—C5179.9 (3)
O4—S1—O2—Ni1115.69 (18)Ni1—N2—C6—C53.3 (4)
O1—S1—O2—Ni10.61 (15)N1—C5—C6—N21.0 (5)
N2—Ni1—O2—S188.62 (15)C4—C5—C6—N2177.3 (4)
N3—Ni1—O2—S194.95 (14)N1—C5—C6—C7179.5 (4)
N4—Ni1—O2—S141.4 (5)C4—C5—C6—C72.2 (6)
N1—Ni1—O2—S1168.16 (14)N2—C6—C7—C80.7 (6)
O1—Ni1—O2—S10.46 (11)C5—C6—C7—C8179.9 (4)
N2—Ni1—N1—C1175.7 (4)C6—C7—C8—C90.3 (7)
N3—Ni1—N1—C111.6 (4)C7—C8—C9—C101.3 (7)
N4—Ni1—N1—C191.6 (4)C6—N2—C10—C90.5 (6)
O2—Ni1—N1—C180.7 (4)Ni1—N2—C10—C9175.7 (3)
O1—Ni1—N1—C1114.8 (4)C8—C9—C10—N21.5 (7)
S1—Ni1—N1—C189.2 (4)C15—N3—C11—C122.3 (6)
N2—Ni1—N1—C52.7 (3)Ni1—N3—C11—C12176.9 (3)
N3—Ni1—N1—C5170.0 (3)N3—C11—C12—C130.8 (6)
N4—Ni1—N1—C590.0 (3)C11—C12—C13—C141.1 (7)
O2—Ni1—N1—C597.7 (3)C12—C13—C14—C151.3 (7)
O1—Ni1—N1—C563.5 (5)C11—N3—C15—C142.0 (6)
S1—Ni1—N1—C589.2 (3)Ni1—N3—C15—C14177.2 (3)
N3—Ni1—N2—C10120.5 (8)C11—N3—C15—C16177.2 (3)
N4—Ni1—N2—C1083.6 (3)Ni1—N3—C15—C163.5 (4)
N1—Ni1—N2—C10179.6 (4)C13—C14—C15—N30.2 (6)
O2—Ni1—N2—C1084.5 (3)C13—C14—C15—C16178.9 (4)
O1—Ni1—N2—C1016.9 (3)C20—N4—C16—C171.3 (6)
S1—Ni1—N2—C1050.8 (3)Ni1—N4—C16—C17174.2 (3)
N3—Ni1—N2—C655.8 (9)C20—N4—C16—C15179.0 (3)
N4—Ni1—N2—C692.8 (3)Ni1—N4—C16—C153.5 (4)
N1—Ni1—N2—C63.3 (3)N3—C15—C16—N44.7 (5)
O2—Ni1—N2—C699.2 (3)C14—C15—C16—N4176.1 (4)
O1—Ni1—N2—C6166.8 (3)N3—C15—C16—C17173.0 (4)
S1—Ni1—N2—C6132.8 (3)C14—C15—C16—C176.2 (6)
N2—Ni1—N3—C11142.9 (7)N4—C16—C17—C180.5 (6)
N4—Ni1—N3—C11179.5 (3)C15—C16—C17—C18178.0 (4)
N1—Ni1—N3—C1184.9 (3)C16—C17—C18—C190.9 (7)
O2—Ni1—N3—C1112.2 (3)C17—C18—C19—C201.3 (7)
O1—Ni1—N3—C1179.8 (3)C16—N4—C20—C190.9 (6)
S1—Ni1—N3—C1145.7 (3)Ni1—N4—C20—C19173.9 (3)
N2—Ni1—N3—C1536.3 (9)C18—C19—C20—N40.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1i0.981.992.925 (5)160
O1W—H2W1···O4ii0.862.042.819 (5)150
O2W—H1W2···O3Wiii0.952.083.03 (2)174
O2W—H2W2···O1W0.851.932.774 (11)170
O3W—H1W3···O3Wiv0.991.912.86 (4)163
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1i0.981.992.925 (5)159.7
O1W—H2W1···O4ii0.862.042.819 (5)150.1
O2W—H1W2···O3Wiii0.952.083.03 (2)173.8
O2W—H2W2···O1W0.851.932.774 (11)169.6
O3W—H1W3···O3Wiv0.991.912.86 (4)162.5
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y+1, z.
Acknowledgements top

Financial support from the State Fund for Fundamental Researches of Ukraine (grant No. GP/F36/032) is gratefully acknowledged. We also thank Dr E. B. Rusanov, Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, for collecting the X-ray data.

references
References top

Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.

Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.

Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.

Fritsky, I. O., Ott, R. & Krämer, R. (2000). Angew. Chem. Int. Ed. 39, 3255–3258.

Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Iskenderov, T. S., Golenya, I. A., Gumienna-Kontecka, E., Fritsky, I. O. & Prisyazhnaya, E. V. (2009). Acta Cryst. E65, o2123–o2124.

Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.

Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.

Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.

Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.