organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Chlorophenyl)-N-(3,4-difluorophenyl)acetamide

A. S. Praveen,^a H. S. Yathirajan,^a Jerry P. Jasinski,^b* Amanda C. Keeley,^b B. Narayana^c and B. K. Sarojini^d

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^dDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India Correspondence e-mail: jjasinski@keene.edu

Received 19 May 2013; accepted 21 May 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.111; data-to-parameter ratio = 13.7.

In the title compound, $C_{14}H_{10}ClF_2NO$, the dihedral angle between the mean planes of the 4-chlorophenyl and 3,4difluorophenyl rings is $65.2 (1)^\circ$. These two planes are twisted by 83.5 (5) and 38.9 (9)°, respectively, from that of the acetamide group. In the crystal, $N-H \cdots O$ hydrogen bonds form infinite chains along [100]. Weak $C-H\cdots O$ and C-H...F interactions are also observed and stack molecules along the b axis.

Related literature

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For related structures, see: Praveen et al. (2011a,b,c, 2012). For standard bond lengths, see: Allen et al. (1987).

C14H10ClF2NO $M_r = 281.68$

```
a = 4.8935 (5) Å
```

b = 5.8995 (6) Å c = 42.572 (4) Å V = 1229.0 (2) Å³ Z = 4

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) $T_{\min} = 0.608, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	$\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.111$	Absolute structure: Flack x deter-
S = 1.14	mined using 852 quotients
2358 reflections	[(I+)-(I-)]/[(I+)+(I-)] (Parsons
172 parameters	& Flack, 2004).
H-atom parameters constrained	Flack parameter: -0.003 (14)
$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{l} N1 - H1 \cdots O1^{i} \\ C5 - H5 \cdots O1^{ii} \\ C14 - H14 \cdots F1^{iii} \end{array}$	0.88	1.97	2.854 (4)	177
	0.95	2.63	3.307 (4)	129
	0.95	2.69	3.615 (5)	164

Cu $K\alpha$ radiation $\mu = 2.92 \text{ mm}^{-3}$

 $0.36 \times 0.18 \times 0.08 \text{ mm}$

7056 measured reflections

2358 independent reflections

2293 reflections with $I > 2\sigma(I)$

T = 173 K

 $R_{\rm int} = 0.036$

Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z; (iii) x - 1, y + 1, z.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

ASP thanks the University of Mysore for research facilities. BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. JPJ acknowledges the NSF-MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5323).

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.
- Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950
- Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.
- Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011a). Acta Crvst. E67. 01826.
- Praveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2602-o2603.
- Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o2604.

Praveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o226–o227.Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

- Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.
- Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.

supporting information

Acta Cryst. (2013). E69, 0996-0997 [doi:10.1107/S1600536813014165]

2-(4-Chlorophenyl)-N-(3,4-difluorophenyl)acetamide

A. S. Praveen, H. S. Yathirajan, Jerry P. Jasinski, Amanda C. Keeley, B. Narayana and B. K. Sarojini

S1. Comment

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin *et al.*, 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu *et al.*, 2008, 2010). Crystal structures of some acetamide derivatives viz., N-(3-chloro-4-fluoro-phenyl)-2-(naphthalen-1-yl)acetamide (Praveen *et al.*, 2011*a*), N-(4-chloro-1,3-benzothiazol-2-yl)-2- (3-methylphenyl)-acetamide monohydrate (Praveen *et al.*, 2011*b*), N-(3-chloro-4-fluorophenyl)-2,2-diphenylacetamide (Praveen *et al.*, 2011*c*) and N-(4,6-dimethoxypyrimidin-2-yl)-2-(3-methylphenyl)acetamide (Praveen *et al.*, 2012) have been reported. In view of the importance of amides, we report here the crystal structure of the title compound, C₁₄H₁₀ClF₂NO, (I).

In (I) the dihedral angle between the mean planes of the 4-chlorophenyl and 3,4-difluorophenyl rings is 65.2 (1)° (Fig. 1). These two planes are twisted by 83.5 (5)° and 38.9 (9)°, respectively, from that of the acetamide group. Bond lengths are in normal ranges (Allen *et al.*, 1987). In the crystal, N—H···O hydrogen bonds are observed forming infinite chains along [100] (Fig. 2). Weak C5–H5···O1 and C14–H14···F1 intermolecular interactions are also observed, Table 1, stacking molecules along the *b* axis and contributing to the packing stability.

S2. Experimental

4-Chlorophenylacetic acid (0.168 g, 1 mmol), 3,4-difluoro aniline (0.129 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring and extracted thrice with dichloromethane. The organic layer was washed with saturated NaHCO₃ solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from a dichloromethane and ethyl acetate (1:1) mixture by the slow evaporation method (m.p.: 394– 396 K).

S3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.95Å (CH), 0.99Å (CH₂) or 0.88° (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH₂, NH) times U_{eq} of the parent atom.

Figure 1

Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.

Figure 2

Packing diagram of the title compound viewed along the b axis. Dashed lines indicate N—H···O hydrogen bonds forming infinite chains along (100). H atoms not involved in hydrogen bonding have been deleted for clarity.

Figure 3

Synthesis of (I).

2-(4-Chlorophenyl)-N-(3,4-difluorophenyl)acetamide

Crystal data

C₁₄H₁₀ClF₂NO $M_r = 281.68$ Orthorhombic, $P2_12_12_1$ a = 4.8935 (5) Å b = 5.8995 (6) Å c = 42.572 (4) Å V = 1229.0 (2) Å³ Z = 4F(000) = 576

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 16.1500 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> and <i>CrysAlis RED</i> : Agilent.	$T_{\min} = 0.608, T_{\max} = 1.000$ 7056 measured reflections 2358 independent reflections 2293 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{\max} = 71.9^{\circ}, \theta_{\min} = 4.2^{\circ}$ $h = -5 \rightarrow 5$ $k = -5 \rightarrow 7$
2012)	$l = -51 \rightarrow 52$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.111$ S = 1.14	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0565P)^2 + 0.5753P]$ where $P = (F_o^2 + 2F_o^2)/3$
2358 reflections	where $F = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$

 $D_{\rm x} = 1.523 \text{ Mg m}^{-3}$

 $\theta = 4.2 - 71.8^{\circ}$

 $\mu = 2.92 \text{ mm}^{-1}$

Block, colourless

 $0.36 \times 0.18 \times 0.08 \text{ mm}$

T = 173 K

Cu Ka radiation, $\lambda = 1.5418$ Å

Cell parameters from 2751 reflections

172 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0565P)^{2} + 0.5753P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.42 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.28 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack x determined using 852 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004). Absolute structure parameter: -0.003 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atom	ic coordinates	and isotropic	c or equivale	nt isotropic dis	splacement	parameters ($(Å^2)$)
			4	4	1		· ·	

	r	12	7	I. */I.	
	X	y	2	U _{1S0} / U _{eq}	
Cl1	0.07824 (18)	1.15259 (14)	0.52637 (2)	0.0318 (2)	
F1	1.2311 (7)	-0.3034 (4)	0.69693 (6)	0.0598 (8)	
F2	0.8308 (7)	-0.2387 (5)	0.73854 (6)	0.0667 (9)	
01	0.5599 (5)	0.4621 (4)	0.62977 (6)	0.0325 (6)	
N1	0.9971 (6)	0.3740 (5)	0.64241 (6)	0.0278 (6)	
H1	1.1690	0.4034	0.6379	0.033*	
C1	0.8043 (7)	0.4794 (5)	0.62509 (7)	0.0235 (7)	

C2	0.9212 (8)	0.6146 (6)	0.59751 (8)	0.0302 (7)	
H2A	1.0618	0.7206	0.6055	0.036*	
H2B	1.0118	0.5088	0.5828	0.036*	
C3	0.7068 (7)	0.7477 (6)	0.57993 (7)	0.0256 (7)	
C4	0.6153 (8)	0.9550 (6)	0.59132 (8)	0.0280 (7)	
H4	0.6866	1.0118	0.6105	0.034*	
C5	0.4220 (8)	1.0801 (5)	0.57515 (7)	0.0274 (7)	
H5	0.3605	1.2217	0.5831	0.033*	
C6	0.3201 (7)	0.9951 (6)	0.54724 (7)	0.0242 (7)	
C7	0.4066 (8)	0.7886 (6)	0.53548 (7)	0.0276 (7)	
H7	0.3341	0.7315	0.5164	0.033*	
C8	0.5996 (7)	0.6671 (6)	0.55194 (7)	0.0281 (7)	
H8	0.6604	0.5254	0.5440	0.034*	
C9	0.9458 (7)	0.2196 (6)	0.66731 (7)	0.0268 (7)	
C10	1.1106 (8)	0.0296 (6)	0.66937 (8)	0.0332 (8)	
H10	1.2496	0.0031	0.6542	0.040*	
C11	1.0702 (9)	-0.1211 (6)	0.69379 (9)	0.0388 (9)	
C12	0.8660 (9)	-0.0846 (7)	0.71526 (9)	0.0414 (10)	
C13	0.7041 (9)	0.1022 (8)	0.71351 (8)	0.0420 (10)	
H13	0.5651	0.1263	0.7287	0.050*	
C14	0.7420 (7)	0.2572 (7)	0.68951 (8)	0.0328 (8)	
H14	0.6298	0.3882	0.6882	0.039*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0302 (4)	0.0333 (4)	0.0318 (4)	0.0079 (4)	-0.0016 (3)	0.0064 (3)
F1	0.071 (2)	0.0458 (15)	0.0624 (16)	0.0100 (14)	-0.0095 (14)	0.0118 (13)
F2	0.0690 (19)	0.079 (2)	0.0520 (14)	-0.0119 (17)	-0.0029 (13)	0.0405 (14)
01	0.0169 (13)	0.0455 (14)	0.0351 (12)	-0.0013 (12)	0.0013 (10)	0.0068 (11)
N1	0.0156 (14)	0.0387 (16)	0.0292 (13)	-0.0024 (11)	0.0008 (10)	0.0070 (12)
C1	0.0190 (17)	0.0247 (16)	0.0267 (15)	-0.0005 (13)	0.0014 (12)	-0.0011 (12)
C2	0.0221 (17)	0.0332 (17)	0.0355 (17)	-0.0003 (17)	0.0047 (14)	0.0104 (14)
C3	0.0216 (16)	0.0264 (16)	0.0288 (16)	-0.0002 (14)	0.0052 (13)	0.0072 (13)
C4	0.0282 (19)	0.0296 (16)	0.0263 (15)	-0.0030 (15)	-0.0021 (13)	-0.0010 (13)
C5	0.0298 (18)	0.0225 (15)	0.0298 (15)	0.0022 (15)	0.0040 (14)	-0.0023 (12)
C6	0.0192 (16)	0.0259 (16)	0.0275 (15)	0.0004 (13)	0.0019 (12)	0.0065 (12)
C7	0.0285 (18)	0.0285 (16)	0.0259 (14)	0.0003 (15)	0.0006 (13)	-0.0021 (12)
C8	0.0290 (18)	0.0249 (15)	0.0303 (15)	0.0063 (15)	0.0045 (14)	-0.0014 (12)
C9	0.0210 (16)	0.0343 (18)	0.0251 (14)	-0.0050 (15)	-0.0043 (13)	0.0024 (12)
C10	0.029 (2)	0.0396 (19)	0.0315 (16)	-0.0003 (16)	-0.0016 (14)	0.0014 (14)
C11	0.039 (2)	0.0347 (19)	0.0425 (19)	-0.0027 (19)	-0.0121 (18)	0.0079 (16)
C12	0.036 (2)	0.053 (2)	0.0352 (18)	-0.0142 (18)	-0.0074 (16)	0.0164 (18)
C13	0.033 (2)	0.065 (3)	0.0282 (17)	-0.007 (2)	0.0036 (15)	0.0057 (18)
C14	0.0234 (19)	0.045 (2)	0.0301 (17)	0.0004 (16)	0.0002 (13)	0.0005 (16)

Geometric parameters (Å, °)

Cl1—C6	1.747 (3)	C5—H5	0.9500
F1—C11	1.339 (5)	C5—C6	1.383 (5)
F2—C12	1.356 (4)	C6—C7	1.383 (5)
O1—C1	1.217 (4)	С7—Н7	0.9500
N1—H1	0.8800	C7—C8	1.377 (5)
N1—C1	1.349 (4)	C8—H8	0.9500
N1—C9	1.420 (4)	C9—C10	1.384 (5)
C1—C2	1.530 (4)	C9—C14	1.392 (5)
C2—H2A	0.9900	C10—H10	0.9500
C2—H2B	0.9900	C10—C11	1.382 (5)
C2—C3	1.509 (5)	C11—C12	1.371 (6)
C3—C4	1.390 (5)	C12—C13	1.359 (6)
C3—C8	1.386 (5)	C13—H13	0.9500
C4—H4	0.9500	C13—C14	1.383 (5)
C4—C5	1.383 (5)	C14—H14	0.9500
C1—N1—H1	117.3	С6—С7—Н7	120.5
C1—N1—C9	125.5 (3)	C8—C7—C6	118.9 (3)
C9—N1—H1	117.3	С8—С7—Н7	120.5
O1C1N1	124.0 (3)	С3—С8—Н8	119.4
O1—C1—C2	122.5 (3)	C7—C8—C3	121.2 (3)
N1—C1—C2	113.5 (3)	С7—С8—Н8	119.4
C1—C2—H2A	109.0	C10—C9—N1	117.7 (3)
C1—C2—H2B	109.0	C10-C9-C14	120.2 (3)
H2A—C2—H2B	107.8	C14—C9—N1	122.1 (3)
C3—C2—C1	113.1 (3)	C9—C10—H10	120.5
C3—C2—H2A	109.0	C11—C10—C9	119.0 (4)
C3—C2—H2B	109.0	C11—C10—H10	120.5
C4—C3—C2	120.6 (3)	F1-C11-C10	120.5 (4)
C8—C3—C2	120.7 (3)	F1—C11—C12	119.2 (3)
C8—C3—C4	118.7 (3)	C12—C11—C10	120.3 (4)
C3—C4—H4	119.5	F2-C12-C11	118.3 (4)
C5—C4—C3	121.1 (3)	F2-C12-C13	120.6 (4)
C5—C4—H4	119.5	C13—C12—C11	121.0 (3)
C4—C5—H5	120.6	C12—C13—H13	120.1
C4—C5—C6	118.7 (3)	C12—C13—C14	119.9 (4)
C6—C5—H5	120.6	C14—C13—H13	120.1
C5—C6—Cl1	119.2 (3)	C9—C14—H14	120.3
C5—C6—C7	121.3 (3)	C13—C14—C9	119.5 (4)
C7—C6—Cl1	119.4 (3)	C13—C14—H14	120.3
Cl1—C6—C7—C8	179.3 (3)	C4—C5—C6—C11	-179.4 (3)
F1-C11-C12-F2	-1.6 (6)	C4—C5—C6—C7	0.3 (5)
F1-C11-C12-C13	177.8 (4)	C5—C6—C7—C8	-0.5 (5)
F2-C12-C13-C14	-179.7 (4)	C6—C7—C8—C3	0.2 (5)
O1—C1—C2—C3	8.0 (5)	C8—C3—C4—C5	-0.3 (5)

N1—C1—C2—C3	-175.1 (3)	C9—N1—C1—O1	3.5 (6)
N1—C9—C10—C11	178.5 (3)	C9—N1—C1—C2	-173.4 (3)
N1-C9-C14-C13	-179.1 (3)	C9—C10—C11—F1	-178.2 (3)
C1—N1—C9—C10	139.2 (4)	C9—C10—C11—C12	1.3 (6)
C1—N1—C9—C14	-42.1 (5)	C10—C9—C14—C13	-0.5 (5)
C1—C2—C3—C4	80.6 (4)	C10-C11-C12-F2	178.9 (4)
C1—C2—C3—C8	-100.1 (4)	C10-C11-C12-C13	-1.6 (6)
C2—C3—C4—C5	179.0 (3)	C11—C12—C13—C14	0.9 (6)
C2—C3—C8—C7	-179.1 (3)	C12—C13—C14—C9	0.2 (6)
C3—C4—C5—C6	0.0 (5)	C14—C9—C10—C11	-0.2 (5)
C4—C3—C8—C7	0.2 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
N1—H1···O1 ⁱ	0.88	1.97	2.854 (4)	177
С5—Н5…О1 ^{іі}	0.95	2.63	3.307 (4)	129
C14—H14…F1 ⁱⁱⁱ	0.95	2.69	3.615 (5)	164

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*+1, *z*; (iii) *x*-1, *y*+1, *z*.