supplementary materials


sj5323 scheme

Acta Cryst. (2013). E69, o996-o997    [ doi:10.1107/S1600536813014165 ]

2-(4-Chlorophenyl)-N-(3,4-difluorophenyl)acetamide

A. S. Praveen, H. S. Yathirajan, J. P. Jasinski, A. C. Keeley, B. Narayana and B. K. Sarojini

Abstract top

In the title compound, C14H10ClF2NO, the dihedral angle between the mean planes of the 4-chlorophenyl and 3,4-difluorophenyl rings is 65.2 (1)°. These two planes are twisted by 83.5 (5) and 38.9 (9)°, respectively, from that of the acetamide group. In the crystal, N-H...O hydrogen bonds form infinite chains along [100]. Weak C-H...O and C-H...F interactions are also observed and stack molecules along the b axis.

Comment top

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). Crystal structures of some acetamide derivatives viz., N-(3-chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen et al., 2011a), N-(4-chloro-1,3-benzothiazol-2-yl)-2- (3-methylphenyl)acetamide monohydrate (Praveen et al., 2011b), N-(3-chloro-4-fluorophenyl)-2,2-diphenylacetamide (Praveen et al., 2011c) and N-(4,6-dimethoxypyrimidin-2-yl)-2-(3-methylphenyl)acetamide (Praveen et al., 2012) have been reported. In view of the importance of amides, we report here the crystal structure of the title compound, C14H10ClF2NO, (I).

In (I) the dihedral angle between the mean planes of the 4-chlorophenyl and 3,4-difluorophenyl rings is 65.2 (1)° (Fig. 1). These two planes are twisted by 83.5 (5)° and 38.9 (9)°, respectively, from that of the acetamide group. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, N—H···O hydrogen bonds are observed forming infinite chains along [100] (Fig. 2). Weak C5–H5···O1 and C14–H14···F1 intermolecular interactions are also observed, Table 1, stacking molecules along the b axis and contributing to the packing stability.

Related literature top

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For related structures, see: Praveen et al. (2011a,b,c, 2012). For standard bond lengths, see: Allen et al. (1987).

Experimental top

4-Chlorophenylacetic acid (0.168 g, 1 mmol), 3,4-difluoro aniline (0.129 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring and extracted thrice with dichloromethane. The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from a dichloromethane and ethyl acetate (1:1) mixture by the slow evaporation method (m.p.: 394–396 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.88° (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Dashed lines indicate N—H···O hydrogen bonds forming infinite chains along (100). H atoms not involved in hydrogen bonding have been deleted for clarity.
[Figure 3] Fig. 3. Synthesis of (I).
2-(4-Chlorophenyl)-N-(3,4-difluorophenyl)acetamide top
Crystal data top
C14H10ClF2NODx = 1.523 Mg m3
Mr = 281.68Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, P212121Cell parameters from 2751 reflections
a = 4.8935 (5) Åθ = 4.2–71.8°
b = 5.8995 (6) ŵ = 2.92 mm1
c = 42.572 (4) ÅT = 173 K
V = 1229.0 (2) Å3Block, colourless
Z = 40.36 × 0.18 × 0.08 mm
F(000) = 576
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2358 independent reflections
Radiation source: Enhance (Cu) X-ray Source2293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.1500 pixels mm-1θmax = 71.9°, θmin = 4.2°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 57
Tmin = 0.608, Tmax = 1.000l = 5152
7056 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.5753P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max = 0.001
S = 1.14Δρmax = 0.42 e Å3
2358 reflectionsΔρmin = 0.28 e Å3
172 parametersAbsolute structure: Flack x determined using 852 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004).
0 restraintsFlack parameter: 0.003 (14)
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H10ClF2NOV = 1229.0 (2) Å3
Mr = 281.68Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 4.8935 (5) ŵ = 2.92 mm1
b = 5.8995 (6) ÅT = 173 K
c = 42.572 (4) Å0.36 × 0.18 × 0.08 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2358 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2293 reflections with I > 2σ(I)
Tmin = 0.608, Tmax = 1.000Rint = 0.036
7056 measured reflectionsθmax = 71.9°
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.111Δρmax = 0.42 e Å3
S = 1.14Δρmin = 0.28 e Å3
2358 reflectionsAbsolute structure: Flack x determined using 852 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004).
172 parametersFlack parameter: 0.003 (14)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07824 (18)1.15259 (14)0.52637 (2)0.0318 (2)
F11.2311 (7)0.3034 (4)0.69693 (6)0.0598 (8)
F20.8308 (7)0.2387 (5)0.73854 (6)0.0667 (9)
O10.5599 (5)0.4621 (4)0.62977 (6)0.0325 (6)
N10.9971 (6)0.3740 (5)0.64241 (6)0.0278 (6)
H11.16900.40340.63790.033*
C10.8043 (7)0.4794 (5)0.62509 (7)0.0235 (7)
C20.9212 (8)0.6146 (6)0.59751 (8)0.0302 (7)
H2A1.06180.72060.60550.036*
H2B1.01180.50880.58280.036*
C30.7068 (7)0.7477 (6)0.57993 (7)0.0256 (7)
C40.6153 (8)0.9550 (6)0.59132 (8)0.0280 (7)
H40.68661.01180.61050.034*
C50.4220 (8)1.0801 (5)0.57515 (7)0.0274 (7)
H50.36051.22170.58310.033*
C60.3201 (7)0.9951 (6)0.54724 (7)0.0242 (7)
C70.4066 (8)0.7886 (6)0.53548 (7)0.0276 (7)
H70.33410.73150.51640.033*
C80.5996 (7)0.6671 (6)0.55194 (7)0.0281 (7)
H80.66040.52540.54400.034*
C90.9458 (7)0.2196 (6)0.66731 (7)0.0268 (7)
C101.1106 (8)0.0296 (6)0.66937 (8)0.0332 (8)
H101.24960.00310.65420.040*
C111.0702 (9)0.1211 (6)0.69379 (9)0.0388 (9)
C120.8660 (9)0.0846 (7)0.71526 (9)0.0414 (10)
C130.7041 (9)0.1022 (8)0.71351 (8)0.0420 (10)
H130.56510.12630.72870.050*
C140.7420 (7)0.2572 (7)0.68951 (8)0.0328 (8)
H140.62980.38820.68820.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0302 (4)0.0333 (4)0.0318 (4)0.0079 (4)0.0016 (3)0.0064 (3)
F10.071 (2)0.0458 (15)0.0624 (16)0.0100 (14)0.0095 (14)0.0118 (13)
F20.0690 (19)0.079 (2)0.0520 (14)0.0119 (17)0.0029 (13)0.0405 (14)
O10.0169 (13)0.0455 (14)0.0351 (12)0.0013 (12)0.0013 (10)0.0068 (11)
N10.0156 (14)0.0387 (16)0.0292 (13)0.0024 (11)0.0008 (10)0.0070 (12)
C10.0190 (17)0.0247 (16)0.0267 (15)0.0005 (13)0.0014 (12)0.0011 (12)
C20.0221 (17)0.0332 (17)0.0355 (17)0.0003 (17)0.0047 (14)0.0104 (14)
C30.0216 (16)0.0264 (16)0.0288 (16)0.0002 (14)0.0052 (13)0.0072 (13)
C40.0282 (19)0.0296 (16)0.0263 (15)0.0030 (15)0.0021 (13)0.0010 (13)
C50.0298 (18)0.0225 (15)0.0298 (15)0.0022 (15)0.0040 (14)0.0023 (12)
C60.0192 (16)0.0259 (16)0.0275 (15)0.0004 (13)0.0019 (12)0.0065 (12)
C70.0285 (18)0.0285 (16)0.0259 (14)0.0003 (15)0.0006 (13)0.0021 (12)
C80.0290 (18)0.0249 (15)0.0303 (15)0.0063 (15)0.0045 (14)0.0014 (12)
C90.0210 (16)0.0343 (18)0.0251 (14)0.0050 (15)0.0043 (13)0.0024 (12)
C100.029 (2)0.0396 (19)0.0315 (16)0.0003 (16)0.0016 (14)0.0014 (14)
C110.039 (2)0.0347 (19)0.0425 (19)0.0027 (19)0.0121 (18)0.0079 (16)
C120.036 (2)0.053 (2)0.0352 (18)0.0142 (18)0.0074 (16)0.0164 (18)
C130.033 (2)0.065 (3)0.0282 (17)0.007 (2)0.0036 (15)0.0057 (18)
C140.0234 (19)0.045 (2)0.0301 (17)0.0004 (16)0.0002 (13)0.0005 (16)
Geometric parameters (Å, º) top
Cl1—C61.747 (3)C5—H50.9500
F1—C111.339 (5)C5—C61.383 (5)
F2—C121.356 (4)C6—C71.383 (5)
O1—C11.217 (4)C7—H70.9500
N1—H10.8800C7—C81.377 (5)
N1—C11.349 (4)C8—H80.9500
N1—C91.420 (4)C9—C101.384 (5)
C1—C21.530 (4)C9—C141.392 (5)
C2—H2A0.9900C10—H100.9500
C2—H2B0.9900C10—C111.382 (5)
C2—C31.509 (5)C11—C121.371 (6)
C3—C41.390 (5)C12—C131.359 (6)
C3—C81.386 (5)C13—H130.9500
C4—H40.9500C13—C141.383 (5)
C4—C51.383 (5)C14—H140.9500
C1—N1—H1117.3C6—C7—H7120.5
C1—N1—C9125.5 (3)C8—C7—C6118.9 (3)
C9—N1—H1117.3C8—C7—H7120.5
O1—C1—N1124.0 (3)C3—C8—H8119.4
O1—C1—C2122.5 (3)C7—C8—C3121.2 (3)
N1—C1—C2113.5 (3)C7—C8—H8119.4
C1—C2—H2A109.0C10—C9—N1117.7 (3)
C1—C2—H2B109.0C10—C9—C14120.2 (3)
H2A—C2—H2B107.8C14—C9—N1122.1 (3)
C3—C2—C1113.1 (3)C9—C10—H10120.5
C3—C2—H2A109.0C11—C10—C9119.0 (4)
C3—C2—H2B109.0C11—C10—H10120.5
C4—C3—C2120.6 (3)F1—C11—C10120.5 (4)
C8—C3—C2120.7 (3)F1—C11—C12119.2 (3)
C8—C3—C4118.7 (3)C12—C11—C10120.3 (4)
C3—C4—H4119.5F2—C12—C11118.3 (4)
C5—C4—C3121.1 (3)F2—C12—C13120.6 (4)
C5—C4—H4119.5C13—C12—C11121.0 (3)
C4—C5—H5120.6C12—C13—H13120.1
C4—C5—C6118.7 (3)C12—C13—C14119.9 (4)
C6—C5—H5120.6C14—C13—H13120.1
C5—C6—Cl1119.2 (3)C9—C14—H14120.3
C5—C6—C7121.3 (3)C13—C14—C9119.5 (4)
C7—C6—Cl1119.4 (3)C13—C14—H14120.3
Cl1—C6—C7—C8179.3 (3)C4—C5—C6—Cl1179.4 (3)
F1—C11—C12—F21.6 (6)C4—C5—C6—C70.3 (5)
F1—C11—C12—C13177.8 (4)C5—C6—C7—C80.5 (5)
F2—C12—C13—C14179.7 (4)C6—C7—C8—C30.2 (5)
O1—C1—C2—C38.0 (5)C8—C3—C4—C50.3 (5)
N1—C1—C2—C3175.1 (3)C9—N1—C1—O13.5 (6)
N1—C9—C10—C11178.5 (3)C9—N1—C1—C2173.4 (3)
N1—C9—C14—C13179.1 (3)C9—C10—C11—F1178.2 (3)
C1—N1—C9—C10139.2 (4)C9—C10—C11—C121.3 (6)
C1—N1—C9—C1442.1 (5)C10—C9—C14—C130.5 (5)
C1—C2—C3—C480.6 (4)C10—C11—C12—F2178.9 (4)
C1—C2—C3—C8100.1 (4)C10—C11—C12—C131.6 (6)
C2—C3—C4—C5179.0 (3)C11—C12—C13—C140.9 (6)
C2—C3—C8—C7179.1 (3)C12—C13—C14—C90.2 (6)
C3—C4—C5—C60.0 (5)C14—C9—C10—C110.2 (5)
C4—C3—C8—C70.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.972.854 (4)177
C5—H5···O1ii0.952.633.307 (4)129
C14—H14···F1iii0.952.693.615 (5)164
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.972.854 (4)177.1
C5—H5···O1ii0.952.633.307 (4)128.7
C14—H14···F1iii0.952.693.615 (5)163.8
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y+1, z.
Acknowledgements top

ASP thanks the University of Mysore for research facilities. BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

references
References top

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.

Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.

Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.

Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1826.

Praveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2602–o2603.

Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o2604.

Praveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o226–o227.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.

Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.