organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2,6-Dichlorophenyl)-1-pentyl-4,5diphenyl-1*H*-imidazole

Mehmet Akkurt,^a Shaaban K. Mohamed,^{b,c}* Kuldip Singh,^d Adel A. Marzouk^e and Antar A. Abdelhamid^{b,c}

^aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^cChemistry Department, Faculty of Sccience, Mini University, 61519 El-Minia, Egypt, ^dDepartment of Chemistry, University of Leicester, Leicester, England, and ^ePharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, Egypt Correspondence e-mail: shaabankamel@yahoo.com

Received 22 April 2013; accepted 26 April 2013

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.098; data-to-parameter ratio = 16.3.

The title compound, $C_{26}H_{24}Cl_2N_2$, crystallizes with two independent molecules (1 and 2) in the asymmetric unit. In molecule 1, the two phenyl and 2,6-dichlorophenyl rings are inclined to the imidazole ring at angles of 74.12 (14), 26.13 (14) and 67.30 (14)°, respectively. In molecule 2, due to the different molecular environment in the crystal, the corresponding angles are different, *viz.* 71.72 (15), 16.14 (15) and 80.41 (15)°, respectively. In the crystal, molecules 1 and 2 are linked by $C-H\cdots Cl$ interactions, and inversion-related 2 molecules are linked by $C-H\cdots\pi$ interactions. There are no other significant intermolecular interactions present.

Related literature

For some biological applications of imidazoles, see: Prabhu & Radha (2012); Sharma *et al.* (2009, 2010); Pandey *et al.* (2009); Sisko & Mellinger (2002); Puratchikody & Doble (2007). For the synthesis of imidazole-containing compounds and a similar structure, see: Simpson *et al.* (2013).

V = 4499 (2) Å³

Mo $K\alpha$ radiation

 $0.34 \times 0.16 \times 0.11 \ \mathrm{mm}$

34900 measured reflections

8837 independent reflections

5052 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.30 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int} = 0.123$

543 parameters

 $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$

Z = 8

Experimental

Crystal data

 $\begin{array}{l} C_{26}H_{24}Cl_2N_2\\ M_r = 435.37\\ \text{Monoclinic, } P2_1/c\\ a = 20.172 \ (6) \ \text{\AA}\\ b = 15.947 \ (5) \ \text{\AA}\\ c = 14.500 \ (5) \ \text{\AA}\\ \beta = 105.293 \ (7)^\circ \end{array}$

Data collection

Bruker APEX 2000 CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2011) $T_{\rm min} = 0.516, T_{\rm max} = 0.928$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.098$ S = 0.848837 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/N2/C1-C3 imidazole ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C12A - H12A \cdots Cl1^{i}$	0.95	2.70	3.512 (4)	143
$C21 - H21 \cdots Cg1^{ii}$	0.95	2.88	3.734 (3)	151

Symmetry codes: (i) x, y, z + 1; (ii) -x + 1, -y, -z + 1.

Data collection: *SMART* (Bruker, 2011); cell refinement: *SAINT* (Bruker, 2011); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

The authors are grateful to Manchester Metropolitan University, the University of Leicester and Erciyes University for supporting this study. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2592).

References

- Bruker (2011). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Pandey, J., Tiwari, V. K., Verma, S. S., Chaturvedi, V., Bhatnagar, S. & Sinha, S. (2009). Eur. J. Med. Chem. 44, 3350–3355.
- Prabhu, M. & Radha, R. (2012). Asian J. Pharm. Clin. Res. 5, 154–159. Puratchikody, A. & Doble, M. (2007). Bioorg. Med. Chem. 15, 1083–1090. Sharma, G. K., Kumar, S. & Pathak, D. (2010). Pharma Lett. 2, 223–230.
- Sharma, D., Narasimhan, B., Kumar, P., Judge, V., Narang, R., De Clercq, E. & Balzarini, J. (2009). Eur. J. Med. Chem. 44, 2347–2353.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Simpson, J., Mohamed, S. K., Marzouk, A. A., Talybov, A. H. & Abdelhamid, A. A. (2013). Acta Cryst. E69, 05–06.
- Sisko, J. & Mellinger, M. (2002). Pure Appl. Chem. 74, 1349-1357.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2013). E69, o846-o847 [doi:10.1107/S1600536813011446]

2-(2,6-Dichlorophenyl)-1-pentyl-4,5-diphenyl-1*H*-imidazole

Mehmet Akkurt, Shaaban K. Mohamed, Kuldip Singh, Adel A. Marzouk and Antar A. Abdelhamid

S1. Comment

Imidazoles are considered as an important pharmacophore in medicinal chemistry encompassing wide spectrum of biological activities (Prabhu & Radha, 2012) such as antibacterial, antiviral (Sharma *et al.*, 2009, 2010), antirheumatoid arthritis, anticancer (Sisko & Mellinger, 2002), antitubercular (Pandey *et al.*, 2009) and anti-inflammatory (Puratchikody & Doble, 2007). The title compound has been synthesized among series of imidazole derivatives according to our on going study in green synthesis of multi-substituted imidazoles *via* a multicomponent reactions method using ionic liquid as a recyclable catalyst.

In the title compound (Fig. 1), the asymmetric unit contains two independent molecules; 1 (with N1) and 2 (with N1A). In molecule 1, the two phenyl (C10–C15 and C16–C21) and 2,6-dichlorophenyl (C4–C9) rings are inclined to the N1/N2/C1–C3 imidazole ring at angles of 74.12 (14), 26.13 (14) and 67.30 (14)°, respectively. In molecule 2, the corresponding angles are 71.72 (15), 16.14 (15) and 80.41 (15)°, respectively (the atom labels of molecule 2 are with the extra suffix A). The differences between the corresponding angles arises due to the intra- and intermolecular interactions of the different molecular environments. They are different from those reported in a similar structure (Simpson *et al.*, 2013).

In the crystal, molecules 1 and 2 are linked by C—H···Cl interactions, and inversion related 2 molecules are linked by C —H··· π interactions (Table 1 and Fig. 2). There are no other significant intermolecular interactions present.

S2. Experimental

The title compound was synthesized following the previously reported procedure (Simpson *et al.*, 2013). Block-like colourless crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of an ethanol solution of the title compound.

S3. Refinement

All H-atoms were included in calculated positions and refined using a riding model: C—H = 0.95, 0.99 and 0.98 Å, for CH(aromatic), CH₂ and CH₃ H atoms, respectively, with $U_{iso}(H) = 1.5U_{eq}(C)$ and $U_{eq}(C)$ for other H atoms. One reflection (1 0 0) has been omitted in the final refinement cycles.

Figure 1

The molecular structure of the two independent molecules (1 and 2-with suffix A) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing of the title compound viewed along the b axis. Hydrogen bonds are drawn as dashed lines (see Table 1 for details).

2-(2,6-Dichlorophenyl)-1-pentyl-4,5-diphenyl-1*H*-imidazole

Crystal data	
$C_{26}H_{24}Cl_2N_2$	V = 4499 (2) Å ³
$M_r = 435.37$	Z = 8
Monoclinic, $P2_1/c$	F(000) = 1824
Hall symbol: -P 2ybc	$D_{\rm x} = 1.285 {\rm ~Mg} {\rm ~m}^{-3}$
a = 20.172 (6) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 15.947 (5) Å	Cell parameters from 792 reflections
c = 14.500 (5) Å	$\theta = 2.5 - 24.2^{\circ}$
$\beta = 105.293 \ (7)^{\circ}$	$\mu=0.30~\mathrm{mm^{-1}}$

T = 150 KBlock, colourless

Data collection

Bruker APEX 2000 CCD area-detector diffractometer	34900 measured reflections 8837 independent reflections
Radiation source: fine-focus sealed tube	5052 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.123$
phi and ω scans	$\theta_{\rm max} = 26.0^\circ, \theta_{\rm min} = 1.7^\circ$
Absorption correction: multi-scan	$h = -24 \rightarrow 24$
(SADABS; Bruker, 2011)	$k = -19 \rightarrow 19$
$T_{\min} = 0.516, \ T_{\max} = 0.928$	$l = -17 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map

 $0.34 \times 0.16 \times 0.11 \text{ mm}$

Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
S = 0.84	H-atom parameters constrained
8837 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0212P)^2]$
543 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.29$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.29823 (3)	0.30921 (5)	0.37517 (5)	0.0297 (3)	
Cl2	0.46202 (4)	0.10547 (5)	0.23512 (5)	0.0328 (2)	
N1	0.46666 (10)	0.19189 (13)	0.45220 (15)	0.0205 (7)	
N2	0.36928 (10)	0.11983 (13)	0.43427 (14)	0.0204 (8)	
C1	0.40305 (13)	0.17285 (16)	0.39371 (18)	0.0200 (9)	
C2	0.41270 (13)	0.10305 (16)	0.52403 (18)	0.0195 (9)	
C3	0.47296 (13)	0.14686 (16)	0.53614 (18)	0.0202 (9)	
C4	0.37540 (13)	0.20741 (17)	0.29671 (18)	0.0210 (9)	
C5	0.39632 (13)	0.17906 (17)	0.21808 (19)	0.0241 (9)	
C6	0.36586 (14)	0.20696 (18)	0.1261 (2)	0.0289 (10)	
C7	0.31307 (14)	0.26443 (18)	0.1118 (2)	0.0295 (10)	
C8	0.29128 (14)	0.29496 (17)	0.18758 (19)	0.0274 (10)	
C9	0.32282 (13)	0.26701 (17)	0.27873 (18)	0.0227 (9)	
C10	0.38985 (13)	0.04658 (17)	0.58975 (18)	0.0213 (9)	

C11	0.34051 (14)	-0.01395 (18)	0.5538 (2)	0.0298 (10)
C12	0.31617 (15)	-0.06537 (19)	0.6145 (2)	0.0382 (11)
C13	0.34109 (15)	-0.05737 (19)	0.7124 (2)	0.0348 (11)
C14	0.39050 (14)	0.00240 (18)	0.7488 (2)	0.0308 (11)
C15	0.41468 (14)	0.05382(17)	0.68861 (19)	0.0264 (10)
C16	0.53813(13)	0.14413(17)	0.61316 (18)	0.0203(9)
C17	0.56398(14)	0.21282(18)	0.67047(19)	0.0205(9)
C18	0.62524(15)	0.21202(10) 0.20745(19)	0.7407(2)	0.0290(10) 0.0346(11)
C10	0.62324(15)	0.20745(1)) 0.1337(2)	0.7407(2) 0.7538(2)	0.0340(11) 0.0365(11)
C20	0.00190(13) 0.63607(14)	0.1557(2) 0.0648(2)	0.7558(2) 0.6983(2)	0.0305(11)
C20	0.03097(14) 0.57527(14)	0.0048(2)	0.0985(2)	0.0330(11)
C21	0.57527(14) 0.51522(12)	0.07020(18) 0.25222(16)	0.02033(19) 0.42212(10)	0.0280(10)
C22	0.31323(13)	0.23222(10)	0.43213(19)	0.0220(9)
C23	0.49632 (14)	0.34200 (17)	0.4496 (2)	0.0289 (10)
C24	0.54602 (13)	0.40/39(1/)	0.43014 (19)	0.0287 (10)
C25	0.61807 (13)	0.40211 (18)	0.49662 (19)	0.0317 (10)
C26	0.66054 (15)	0.47987 (19)	0.4898 (2)	0.0425 (11)
Cl1A	0.04153 (4)	0.60347 (5)	0.77291 (5)	0.0408 (3)
Cl2A	0.19909 (4)	0.82158 (5)	1.02289 (5)	0.0462 (3)
N1A	0.12565 (11)	0.63396 (14)	1.03916 (15)	0.0237 (8)
N2A	0.02673 (11)	0.69733 (14)	0.97245 (15)	0.0240 (8)
C1A	0.09269 (14)	0.68241 (17)	0.96875 (19)	0.0229 (9)
C2A	0.07903 (13)	0.61583 (17)	1.09207 (18)	0.0230 (9)
C3A	0.01745 (13)	0.65406 (17)	1.05079 (18)	0.0229 (9)
C4A	0.12283 (13)	0.71366 (17)	0.89307 (18)	0.0227 (9)
C5A	0.10486 (14)	0.68040 (17)	0.80107 (19)	0.0272 (10)
C6A	0.13600 (14)	0.70545 (18)	0.7313 (2)	0.0312 (10)
C7A	0.18707 (14)	0.76503 (18)	0.7527 (2)	0.0316 (11)
C8A	0.20691 (14)	0.79964 (18)	0.84299 (19)	0.0307 (10)
C9A	0.17463 (14)	0.77444 (18)	0.91125 (19)	0.0261 (9)
C10A	0.10028 (14)	0.56404 (17)	1,17776 (19)	0.0235 (9)
C11A	0 16101 (15)	0.51845(19)	1 1938 (2)	0.0374(11)
C12A	0.18591(17)	0.4736(2)	1 2769 (2)	0.0371(11) 0.0458(12)
C13A	0.14991 (16)	0.1750(2) 0.47077(19)	1.2769(2) 1 3459(2)	0.0400(12)
	0.14991(10) 0.08058(15)	0.47077(19) 0.51536(18)	1.3439(2) 1.3310(2)	0.0400(11) 0.0333(11)
	0.06511(14)	0.51330(18) 0.56180(17)	1.3310(2) 1.24883(10)	0.0333(11)
CI5A C16A	-0.05062(13)	0.50180(17) 0.65026(18)	1.24003(19) 1.07212(18)	0.0280(10)
C10A C17A	-0.07410(14)	0.03020(18) 0.71327(10)	1.07212(10) 1.1200(2)	0.0241(9)
C1/A	-0.07410(14) 0.12800(15)	0.71327(19) 0.7070(2)	1.1209 (2)	0.0324(11)
CI8A CI0A	-0.13809 (15)	0.7079(2)	1.1390 (2)	0.0375(11)
CI9A	-0.1/886 (15)	0.6386 (2)	1.1090 (2)	0.0376 (11)
C20A	-0.15554 (15)	0.5749(2)	1.0622 (2)	0.0429 (11)
C21A	-0.09166 (15)	0.58025 (19)	1.0439 (2)	0.0364 (11)
C22A	-0.02348 (14)	0.75371 (17)	0.91036 (19)	0.0285 (10)
C23A	-0.01743 (15)	0.84245 (18)	0.9496 (2)	0.0372 (11)
C24A	-0.07254 (15)	0.9019 (2)	0.8910 (2)	0.0421 (12)
C25A	-0.14530 (15)	0.8789 (2)	0.8894 (2)	0.0483 (14)
C26A	-0.19694 (17)	0.9481 (2)	0.8481 (2)	0.0665 (17)
H6	0.38120	0.18670	0.07360	0.0350*
H7	0.29150	0.28320	0.04890	0.0350*

H8	0.25500	0.33480	0.17730	0.0330*
H11	0.32320	-0.02030	0.48660	0.0360*
H12	0.28220	-0.10640	0.58870	0.0460*
H13	0.32440	-0.09260	0.75420	0.0420*
H14	0.40800	0.00820	0.81610	0.0370*
H15	0.44870	0.09470	0.71480	0.0320*
H17	0.53920	0.26410	0.66120	0.0360*
H18	0.64200	0.25460	0.77990	0.0420*
H19	0.70450	0.13030	0.80130	0.0440*
H20	0.66200	0.01370	0.70790	0.0430*
H21	0.55820	0.02240	0.59060	0.0340*
H22A	0.51650	0.24620	0.36470	0.0270*
H22B	0.56180	0.23980	0.47320	0.0270*
H23A	0.49450	0.34730	0.51680	0.0350*
H23B	0.44980	0.35400	0.40830	0.0350*
H24A	0.54890	0.40090	0.36340	0.0340*
H24B	0.52720	0.46390	0.43600	0.0340*
H25A	0.64150	0.35190	0.48010	0.0380*
H25B	0.61500	0.39560	0.56330	0.0380*
H26A	0.66320	0.48700	0.42380	0.0640*
H26B	0.70700	0.47330	0.53200	0.0640*
H26C	0.63880	0.52930	0.50940	0.0640*
H6A	0.12220	0.68170	0.66910	0.0370*
H7A	0.20870	0.78240	0.70510	0.0380*
H8A	0.24250	0.84040	0.85810	0.0370*
H11A	0.18580	0.51830	1.14650	0.0450*
H12A	0.22820	0.44420	1.28680	0.0550*
H13A	0.16650	0.43870	1.40250	0.0480*
H14A	0.06450	0.51410	1.37800	0.0400*
H15A	0.02370	0.59270	1.24040	0.0340*
H17A	-0.04600	0.76090	1.14230	0.0390*
H18A	-0.15380	0.75190	1.17210	0.0450*
H19A	-0.22300	0.63490	1.12060	0.0450*
H20A	-0.18340	0.52680	1.04230	0.0520*
H21A	-0.07590	0.53570	1.01170	0.0440*
H22C	-0.07050	0.73240	0.90470	0.0340*
H22D	-0.01590	0.75420	0.84560	0.0340*
H23C	0.02850	0.86480	0.95060	0.0450*
H23D	-0.02110	0.84100	1.01630	0.0450*
H24C	-0.06310	0.95920	0.91740	0.0500*
H24D	-0.06860	0.90320	0.82440	0.0500*
H25C	-0.14750	0.86630	0.95540	0.0580*
H25D	-0.15840	0.82740	0.85080	0.0580*
H26D	-0.18670	0.99780	0.88920	0.1000*
H26E	-0.24350	0.92850	0.84490	0.1000*
H26F	-0.19380	0.96250	0.78370	0.1000*
-				

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cl1	0.0307 (4)	0.0309 (5)	0.0279 (4)	0.0085 (4)	0.0082 (3)	0.0019 (3)
Cl2	0.0339 (4)	0.0290 (4)	0.0374 (4)	0.0071 (4)	0.0127 (3)	0.0001 (4)
N1	0.0176 (12)	0.0162 (13)	0.0271 (13)	0.0001 (10)	0.0047 (10)	0.0034 (11)
N2	0.0194 (12)	0.0186 (14)	0.0236 (13)	-0.0003 (11)	0.0063 (10)	0.0013 (10)
C1	0.0191 (15)	0.0162 (16)	0.0250 (15)	0.0016 (13)	0.0063 (12)	0.0001 (13)
C2	0.0213 (15)	0.0159 (15)	0.0224 (15)	0.0006 (13)	0.0075 (12)	0.0009 (13)
C3	0.0216 (16)	0.0148 (16)	0.0245 (15)	0.0042 (13)	0.0064 (12)	0.0018 (12)
C4	0.0199 (15)	0.0190 (16)	0.0240 (15)	-0.0055 (13)	0.0059 (12)	0.0018 (13)
C5	0.0238 (16)	0.0192 (17)	0.0301 (16)	-0.0030 (13)	0.0087 (13)	-0.0024 (13)
C6	0.0330 (18)	0.0276 (19)	0.0268 (16)	-0.0058 (15)	0.0093 (14)	-0.0037 (14)
C7	0.0335 (18)	0.0290 (19)	0.0236 (16)	-0.0049 (15)	0.0031 (14)	0.0052 (14)
C8	0.0261 (17)	0.0247 (18)	0.0296 (17)	0.0029 (14)	0.0042 (13)	0.0052 (14)
C9	0.0224 (16)	0.0199 (17)	0.0265 (16)	-0.0022 (13)	0.0076 (13)	0.0015 (13)
C10	0.0173 (15)	0.0182 (16)	0.0290 (16)	0.0042 (13)	0.0073 (12)	0.0042 (13)
C11	0.0288 (18)	0.0318 (19)	0.0273 (17)	-0.0042 (15)	0.0048 (14)	0.0021 (14)
C12	0.0352 (19)	0.036 (2)	0.044 (2)	-0.0140 (16)	0.0117 (16)	0.0020 (16)
C13	0.0347 (19)	0.036 (2)	0.0376 (19)	-0.0047 (16)	0.0167 (15)	0.0106 (16)
C14	0.0308 (18)	0.035 (2)	0.0269 (17)	0.0040 (15)	0.0083 (14)	0.0052 (15)
C15	0.0231 (16)	0.0275 (18)	0.0296 (17)	-0.0016 (14)	0.0085 (13)	0.0018 (14)
C16	0.0182 (15)	0.0195 (16)	0.0250 (15)	-0.0015 (13)	0.0088 (12)	0.0016 (13)
C17	0.0318 (18)	0.0206 (18)	0.0343 (18)	0.0033 (14)	0.0050 (14)	0.0002 (14)
C18	0.0360 (19)	0.030 (2)	0.0335 (18)	-0.0097 (16)	0.0015 (15)	-0.0054 (15)
C19	0.0249 (17)	0.046 (2)	0.0322 (18)	-0.0039 (16)	-0.0038 (14)	0.0039 (16)
C20	0.0259 (18)	0.035 (2)	0.0420 (19)	0.0063 (15)	0.0019 (15)	0.0047 (16)
C21	0.0266 (17)	0.0257 (18)	0.0305 (17)	0.0022 (14)	0.0052 (14)	-0.0029 (14)
C22	0.0209 (16)	0.0213 (17)	0.0270 (16)	-0.0014 (13)	0.0089 (13)	0.0058 (13)
C23	0.0248 (17)	0.0226 (18)	0.0400 (18)	0.0002 (14)	0.0096 (14)	0.0059 (14)
C24	0.0289 (17)	0.0221 (17)	0.0339 (17)	0.0019 (14)	0.0064 (14)	0.0057 (14)
C25	0.0293 (17)	0.0292 (19)	0.0337 (17)	-0.0020 (15)	0.0031 (14)	-0.0012 (15)
C26	0.0318 (19)	0.034 (2)	0.058 (2)	-0.0081 (16)	0.0054 (16)	-0.0036 (17)
Cl1A	0.0438 (5)	0.0379 (5)	0.0407 (5)	-0.0129 (4)	0.0112 (4)	-0.0081 (4)
Cl2A	0.0511 (5)	0.0586 (6)	0.0299 (4)	-0.0256 (5)	0.0126 (4)	-0.0098 (4)
N1A	0.0219 (13)	0.0264 (15)	0.0236 (13)	-0.0004 (11)	0.0072 (10)	0.0015 (11)
N2A	0.0204 (13)	0.0262 (15)	0.0248 (13)	0.0044 (11)	0.0048 (10)	0.0041 (11)
C1A	0.0213 (16)	0.0221 (17)	0.0258 (16)	-0.0012 (13)	0.0072 (13)	0.0010 (13)
C2A	0.0234 (16)	0.0216 (17)	0.0248 (15)	0.0002 (14)	0.0079 (13)	0.0002 (13)
C3A	0.0221 (16)	0.0225 (17)	0.0247 (15)	-0.0027 (13)	0.0070 (13)	-0.0002 (13)
C4A	0.0207 (16)	0.0244 (17)	0.0236 (15)	0.0066 (13)	0.0070 (12)	0.0047 (13)
C5A	0.0283 (17)	0.0236 (18)	0.0302 (17)	-0.0003 (14)	0.0085 (14)	0.0016 (14)
C6A	0.0335 (18)	0.036 (2)	0.0250 (16)	0.0035 (16)	0.0093 (14)	-0.0014 (14)
C7A	0.0291 (18)	0.034 (2)	0.0350 (18)	0.0031 (15)	0.0142 (15)	0.0077 (15)
C8A	0.0251 (17)	0.036 (2)	0.0311 (17)	-0.0013 (15)	0.0076 (14)	0.0043 (15)
C9A	0.0253 (16)	0.0313 (18)	0.0225 (15)	-0.0006 (14)	0.0076 (13)	0.0005 (14)
C10A	0.0242 (16)	0.0191 (17)	0.0285 (16)	0.0002 (13)	0.0094 (13)	-0.0003 (13)
C11A	0.042 (2)	0.038 (2)	0.0353 (19)	0.0124 (17)	0.0158 (16)	0.0044 (16)

C12A	0.052 (2)	0.046 (2)	0.041 (2)	0.0273 (18)	0.0150 (18)	0.0110 (17)
C13A	0.055 (2)	0.034 (2)	0.0287 (18)	0.0092 (18)	0.0070 (16)	0.0118 (15)
C14A	0.0377 (19)	0.034 (2)	0.0285 (17)	-0.0076 (16)	0.0093 (15)	0.0004 (15)
C15A	0.0246 (17)	0.0280 (18)	0.0315 (17)	-0.0017 (14)	0.0076 (14)	0.0030 (14)
C16A	0.0210 (16)	0.0288 (18)	0.0228 (15)	0.0048 (14)	0.0065 (12)	0.0039 (14)
C17A	0.0257 (17)	0.0298 (19)	0.0428 (19)	-0.0002 (15)	0.0111 (15)	0.0011 (15)
C18A	0.0298 (19)	0.041 (2)	0.046 (2)	0.0076 (17)	0.0176 (16)	0.0000 (17)
C19A	0.0238 (17)	0.049 (2)	0.043 (2)	0.0011 (17)	0.0143 (15)	0.0089 (17)
C20A	0.0290 (19)	0.044 (2)	0.057 (2)	-0.0136 (17)	0.0135 (17)	-0.0056 (18)
C21A	0.0307 (19)	0.032 (2)	0.049 (2)	-0.0039 (16)	0.0147 (16)	-0.0089 (16)
C22A	0.0244 (17)	0.0307 (19)	0.0292 (17)	0.0050 (14)	0.0049 (13)	0.0086 (14)
C23A	0.0373 (19)	0.028 (2)	0.0436 (19)	0.0045 (16)	0.0059 (16)	0.0094 (16)
C24A	0.043 (2)	0.036 (2)	0.047 (2)	0.0094 (17)	0.0113 (17)	0.0104 (17)
C25A	0.042 (2)	0.057 (3)	0.049 (2)	0.0204 (19)	0.0174 (17)	0.0084 (18)
C26A	0.054 (3)	0.077 (3)	0.070 (3)	0.037 (2)	0.019 (2)	0.007 (2)

Geometric parameters (Å, °)

Cl1—C9	1.738 (3)	C24—H24A	0.9900
Cl2—C5	1.738 (3)	C24—H24B	0.9900
Cl1A—C5A	1.740 (3)	C25—H25A	0.9900
Cl2A—C9A	1.734 (3)	С25—Н25В	0.9900
N1—C3	1.390 (3)	C26—H26A	0.9800
N1—C1	1.373 (3)	C26—H26B	0.9800
N1—C22	1.456 (3)	С26—Н26С	0.9800
N2—C2	1.390 (3)	C1A—C4A	1.475 (4)
N2—C1	1.318 (3)	C2A—C3A	1.371 (4)
N1A—C2A	1.392 (4)	C2A—C10A	1.459 (4)
N1A—C1A	1.313 (3)	C3A—C16A	1.486 (4)
N2A—C1A	1.367 (4)	C4A—C5A	1.392 (4)
N2A—C3A	1.383 (3)	C4A—C9A	1.398 (4)
N2A—C22A	1.471 (4)	C5A—C6A	1.383 (4)
C1—C4	1.476 (4)	C6A—C7A	1.375 (4)
C2—C3	1.373 (4)	C7A—C8A	1.379 (4)
C2—C10	1.471 (4)	C8A—C9A	1.380 (4)
C3—C16	1.484 (4)	C10A—C11A	1.390 (4)
C4—C5	1.392 (4)	C10A—C15A	1.397 (4)
C4—C9	1.397 (4)	C11A—C12A	1.377 (4)
C5—C6	1.386 (4)	C12A—C13A	1.383 (4)
C6—C7	1.379 (4)	C13A—C14A	1.377 (4)
С7—С8	1.376 (4)	C14A—C15A	1.379 (4)
C8—C9	1.381 (4)	C16A—C17A	1.382 (4)
C10—C15	1.393 (4)	C16A—C21A	1.386 (4)
C10—C11	1.386 (4)	C17A—C18A	1.386 (4)
C11—C12	1.384 (4)	C18A—C19A	1.378 (4)
C12—C13	1.381 (4)	C19A—C20A	1.372 (4)
C13—C14	1.380 (4)	C20A—C21A	1.385 (4)
C14—C15	1.377 (4)	C22A—C23A	1.518 (4)

C16—C17	1.391 (4)	C23A—C24A	1.536 (4)
C16—C21	1.383 (4)	C24A—C25A	1.507 (4)
C17—C18	1.381 (4)	C25A—C26A	1.527 (5)
C18—C19	1.376 (4)	С6А—Н6А	0.9500
C19—C20	1.376 (4)	C7A—H7A	0.9500
C20—C21	1.384 (4)	C8A—H8A	0.9500
C22—C23	1.520 (4)	C11A—H11A	0.9500
C23—C24	1.524 (4)	C12A—H12A	0.9500
C24—C25	1.520 (4)	C13A—H13A	0.9500
C25—C26	1.525 (4)	C14A—H14A	0.9500
С6—Н6	0.9500	C15A—H15A	0.9500
С7—Н7	0.9500	C17A—H17A	0.9500
С8—Н8	0.9500	C18A—H18A	0.9500
C11—H11	0.9500	C19A—H19A	0.9500
C12—H12	0.9500	C20A—H20A	0.9500
C13—H13	0.9500	C21A—H21A	0.9500
C14—H14	0.9500	C22A—H22C	0.9900
C15—H15	0.9500	C22A—H22D	0.9900
С17—Н17	0.9500	C23A—H23C	0.9900
C18—H18	0.9500	C23A—H23D	0.9900
С19—Н19	0.9500	C24A—H24C	0.9900
C20—H20	0.9500	C24A—H24D	0.9900
C21—H21	0.9500	C25A—H25C	0.9900
C22—H22B	0.9900	C25A—H25D	0.9900
C22—H22A	0.9900	C26A—H26D	0.9800
C23—H23B	0.9900	C26A—H26E	0.9800
C23—H23A	0.9900	C26A—H26F	0.9800
C1—N1—C3	106.4 (2)	H26A—C26—H26B	109.00
C1—N1—C22	126.3 (2)	C25—C26—H26A	110.00
C3—N1—C22	127.3 (2)	C25—C26—H26B	109.00
C1—N2—C2	105.6 (2)	C25—C26—H26C	109.00
C1A—N1A—C2A	105.9 (2)	N1A—C1A—N2A	111.8 (2)
C1A—N2A—C22A	127.1 (2)	N1A—C1A—C4A	123.7 (3)
C3A—N2A—C22A	125.9 (2)	N2A—C1A—C4A	124.6 (2)
C1A—N2A—C3A	106.8 (2)	N1A—C2A—C3A	109.5 (2)
N2-C1-C4	123.7 (2)	N1A—C2A—C10A	119.8 (2)
N1-C1-C4	124.3 (2)	C3A—C2A—C10A	130.7 (3)
N1-C1-N2	112.0 (2)	N2A—C3A—C2A	106.1 (2)
N2-C2-C10	119.8 (2)	N2A—C3A—C16A	121.6 (2)
C3—C2—C10	130.3 (2)	C2A—C3A—C16A	132.2 (2)
N2—C2—C3	109.9 (2)	C1A—C4A—C5A	122.0 (2)
N1—C3—C2	106.1 (2)	C1A—C4A—C9A	121.9 (2)
N1-C3-C16	122.2 (2)	C5A—C4A—C9A	116.0 (2)
C2—C3—C16	131.3 (2)	Cl1A—C5A—C4A	118.9 (2)
C1—C4—C5	122.6 (2)	Cl1A—C5A—C6A	118.6 (2)
C1—C4—C9	120.6 (2)	C4A—C5A—C6A	122.5 (3)
C5—C4—C9	116.6 (2)	C5A—C6A—C7A	119.5 (3)

	110.0 (2)		100.0 (2)
Cl2—C5—C6	118.8 (2)	C6A—C/A—C8A	120.2 (3)
C4—C5—C6	122.1 (3)	C/A—C8A—C9A	119.4 (3)
Cl2—C5—C4	119.2 (2)	CI2A—C9A—C4A	119.4 (2)
C5—C6—C7	119.1 (3)	Cl2A—C9A—C8A	118.1 (2)
C6—C7—C8	120.8 (3)	C4A—C9A—C8A	122.5 (2)
C7—C8—C9	119.1 (3)	C2A—C10A—C11A	119.1 (3)
Cl1—C9—C8	119.2 (2)	C2A-C10A-C15A	123.4 (3)
C4—C9—C8	122.3 (2)	C11A—C10A—C15A	117.4 (2)
Cl1—C9—C4	118.50 (19)	C10A—C11A—C12A	121.3 (3)
C2-C10-C11	120.0 (2)	C11A—C12A—C13A	120.7 (3)
C2-C10-C15	121.8 (2)	C12A—C13A—C14A	118.7 (3)
C11—C10—C15	118.2 (2)	C13A—C14A—C15A	120.9 (3)
C10—C11—C12	120.9 (3)	C10A—C15A—C14A	121.0 (3)
C11—C12—C13	120.3 (3)	C3A—C16A—C17A	122.5 (3)
C12—C13—C14	119.2 (3)	C3A—C16A—C21A	119.0 (3)
C13—C14—C15	120.7 (3)	C17A—C16A—C21A	118.6 (3)
C10—C15—C14	120.8 (3)	C16A—C17A—C18A	120.9 (3)
C_{3} — C_{16} — C_{17}	123.0(2)	C17A - C18A - C19A	1199(3)
C_{17} C_{16} C_{21}	123.3(2) 1183(2)	C18A - C19A - C20A	119.5(3)
C_{3} C_{16} C_{21}	118.5(2) 118.7(2)	C19A - C20A - C21A	119.7(3) 120.5(3)
C_{16} C_{17} C_{18}	110.7(2) 120.9(3)	C16A - C21A - C20A	120.5(3) 120.4(3)
$C_{10} = C_{17} = C_{18} = C_{10}$	120.9(3)	N2A C22A C23A	120.4(3)
$C_{1}^{18} = C_{10}^{10} = C_{20}^{20}$	119.9(3)	C22A C22A C23A	111.3(2) 112.2(2)
C10 - C20 - C21	120.1(3)	C22A = C23A = C24A	113.2(2)
C19 - C20 - C21	119.8(3)	$C_{23}A = C_{24}A = C_{25}A$	114.7(3)
C16-C21-C20	121.0 (3)	$C_{24A} = C_{25A} = C_{26A}$	113.0 (3)
NI-C22-C23	112.2 (2)	С5А—С6А—Н6А	120.00
C22—C23—C24	114.1 (2)	С/А—С6А—Н6А	120.00
C23—C24—C25	114.2 (2)	С6А—С7А—Н7А	120.00
C24—C25—C26	111.9 (2)	C8A—C7A—H7A	120.00
С5—С6—Н6	120.00	C7A—C8A—H8A	120.00
С7—С6—Н6	120.00	C9A—C8A—H8A	120.00
С8—С7—Н7	120.00	C10A—C11A—H11A	119.00
С6—С7—Н7	120.00	C12A—C11A—H11A	119.00
С7—С8—Н8	120.00	C11A—C12A—H12A	120.00
С9—С8—Н8	120.00	C13A—C12A—H12A	120.00
C10-C11-H11	120.00	C12A—C13A—H13A	121.00
C12—C11—H11	120.00	C14A—C13A—H13A	121.00
C13—C12—H12	120.00	C13A—C14A—H14A	120.00
C11—C12—H12	120.00	C15A—C14A—H14A	120.00
C14—C13—H13	120.00	C10A—C15A—H15A	119.00
C12—C13—H13	120.00	C14A—C15A—H15A	119.00
C13—C14—H14	120.00	C16A—C17A—H17A	120.00
C15—C14—H14	120.00	C18A—C17A—H17A	120.00
C10-C15-H15	120.00	C17A—C18A—H18A	120.00
C14—C15—H15	120.00	C19A - C18A - H18A	120.00
C16-C17-H17	120.00	C18A - C10A - H10A	120.00
C18 - C17 - H17	120.00	$C_{0A} = C_{10A} = H_{10A}$	120.00
C10-C18-H18	120.00	C19A - C20A + H20A	120.00
U17-U10-1110	120.00	$012\pi - 020\pi - 1120\pi$	120.00

C17—C18—H18	120.00	C21A—C20A—H20A	120.00
C18—C19—H19	120.00	C16A—C21A—H21A	120.00
C20-C19-H19	120.00	C20A—C21A—H21A	120.00
C21—C20—H20	120.00	N2A—C22A—H22C	109.00
С19—С20—Н20	120.00	N2A—C22A—H22D	109.00
C16—C21—H21	120.00	C23A—C22A—H22C	109.00
C20—C21—H21	119.00	C23A—C22A—H22D	109.00
N1—C22—H22B	109.00	H22C—C22A—H22D	108.00
C23—C22—H22A	109.00	C22A—C23A—H23C	109.00
C23—C22—H22B	109.00	C22A—C23A—H23D	109.00
N1—C22—H22A	109.00	C24A—C23A—H23C	109.00
H22A—C22—H22B	108.00	C24A—C23A—H23D	109.00
H23A—C23—H23B	108.00	H23C—C23A—H23D	108.00
C22—C23—H23B	109.00	$C_{23}A - C_{24}A - H_{24}C$	109.00
C24—C23—H23B	109.00	C23A—C24A—H24D	109.00
C_{2}^{2} C_{3}^{2} H_{23}^{2}	109.00	C25A - C24A - H24C	109.00
C_{24} C_{23} H_{23A}	109.00	C_{25A} C_{24A} H_{24D}	109.00
C_{23} C_{24} H_{24A}	109.00	H_{24C} $-C_{24A}$ $-H_{24D}$	108.00
$H_{24} = C_{24} = H_{24} R$	108.00	$C_{24A} = C_{25A} = H_{25C}$	109.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.00	$C_{24A} = C_{25A} = H_{25C}$	109.00
$C_{25} - C_{24} - H_{24} \Delta$	109.00	$C_{24A} = C_{25A} = H_{25D}$	109.00
$C_{25} = C_{24} = H_{24}R$	109.00	C_{20} C_{25} C	109.00
$C_{23} = C_{24} = H_{24} = H_{24}$	109.00	$H_{25C} = C_{25A} = H_{25D}$	109.00
$C_{24} = C_{25} = H_{25} A$	109.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.00
$C_{20} = C_{23} = H_{23} = H_{23}$	109.00	$C_{25A} = C_{20A} = H_{20D}$	109.00
$C_{20} = C_{23} = H_{25} B$	109.00	C_{25A} C_{26A} H_{26E}	110.00
C_{24} C_{25} H_{25A}	109.00	C_{25A} C_{20A} H_{20F}	100.00
$H_{23}A = C_{23} = H_{23}B$	110.00	H_{20D} C_{20A} H_{20E}	109.00
$H_{20}A - C_{20} - H_{20}C$	100.00	H_{20D} C_{20A} H_{20F}	109.00
H20B-C20-H20C	109.00	Н20Е—С20А—Н20Г	109.00
$C_{3}N_{1}C_{1}N_{2}$	0.1.(3)	$C_{11} - C_{12} - C_{13} - C_{14}$	0.0(5)
$C_3 - N_1 - C_1 - C_4$	-1799(2)	C12 - C13 - C14 - C15	0.0(5)
C^{22} N1 C^{1} N2	-175.8(2)	C_{13} C_{14} C_{15} C_{10}	-0.1(4)
$C_{22} = N_1 - C_1 - C_4$	$4^{2}(4)$	C_{3} C_{16} C_{21} C_{20}	1788(3)
C_{1} N1 C_{3} C_{2}	-0.1(3)	$C_{3} = C_{10} = C_{21} = C_{20}$	-170.0(3)
C1 = N1 = C3 = C2	1733(2)	$C_{21} = C_{10} = C_{17} = C_{18}$	179.4(3)
$C_{1} = N_{1} = C_{2} = C_{10}$	175.3(2) 175.7(2)	$C_{17} = C_{16} = C_{17} = C_{18}$	-0.8(4)
$C_{22} = N_1 = C_3 = C_2$	-10.0(4)	$C_{17} = C_{10} = C_{21} = C_{20}$	0.8(4)
C_{22} N1 C_{22} C_{23}	10.9(4)	$C_{10} - C_{17} - C_{10} - C_{19}$	-1.2(4)
$C_1 = N_1 = C_{22} = C_{23}$	-063(3)	C17 - C18 - C19 - C20	1.3(4)
$C_{2} = N_{1} = C_{2} = C_{2}$	-90.3(3)	$C_{10} = C_{10} = C_{20} = C_{21}$	0.7(4)
$C_2 = N_2 = C_1 = N_1$	0.1(3)	C19 - C20 - C21 - C10	0.3(4)
$C_2 - N_2 - C_1 - C_4$	-180.0(2)	N1 - C22 - C23 - C24	1/9.0(2)
$C_1 = N_2 = C_2 = C_1 O_2$	-0.1(3)	$C_{22} = C_{23} = C_{24} = C_{25} = C_{26}$	-04.9(3)
$C_1 - N_2 - C_2 - C_1 U$	1/0.7(2)	$\begin{array}{c} 123 \\$	-100.8(2)
C_{A} NIA C_{A} NIA C_{A}	0.1(3)	NIA - CIA - CIA - COA	104.0 (3)
C_{A} NIA C_{A} C_{A}	-1/.0(2)	NIA - UIA - U4A - U9A	-70.9(4)
CIA - NIA - C2A - C3A	0.0(3)	N2A - CIA - CIA - COA	-12.8(4)
CIA—NIA—C2A—C10A	-1/8.6 (2)	NZA-CIA-C4A-C9A	111.8 (3)

C3A—N2A—C1A—C4A	177.0 (2)	N1A—C2A—C3A—N2A	-1.0(3)
C22A—N2A—C1A—N1A	174.8 (2)	N1A—C2A—C3A—C16A	174.2 (3)
C3A—N2A—C22A—C23A	86.8 (3)	C10A—C2A—C3A—N2A	178.1 (3)
C3A—N2A—C1A—N1A	-0.7 (3)	C10A—C2A—C3A—C16A	-6.7 (5)
C1A—N2A—C22A—C23A	-88.0 (3)	N1A—C2A—C10A—C11A	-14.2 (4)
C1A—N2A—C3A—C16A	-174.8 (2)	N1A—C2A—C10A—C15A	161.4 (3)
C22A—N2A—C1A—C4A	-7.5 (4)	C3A—C2A—C10A—C11A	166.8 (3)
C1A—N2A—C3A—C2A	1.0 (3)	C3A—C2A—C10A—C15A	-17.6 (5)
C22A—N2A—C3A—C2A	-174.6 (2)	N2A—C3A—C16A—C17A	-83.2 (3)
C22A—N2A—C3A—C16A	9.6 (4)	N2A—C3A—C16A—C21A	98.1 (3)
N2-C1-C4-C5	-103.4 (3)	C2A—C3A—C16A—C17A	102.2 (4)
N1-C1-C4-C9	-107.9 (3)	C2A—C3A—C16A—C21A	-76.4 (4)
N1—C1—C4—C5	76.6 (4)	C1A—C4A—C5A—C11A	3.5 (4)
N2-C1-C4-C9	72.2 (4)	C1A—C4A—C5A—C6A	-175.7 (3)
N2-C2-C10-C15	-152.3 (3)	C9A—C4A—C5A—C11A	179.2 (2)
N2-C2-C3-N1	0.2 (3)	C9A—C4A—C5A—C6A	0.0 (4)
N2-C2-C3-C16	-172.4 (3)	C1A—C4A—C9A—Cl2A	-5.9 (4)
C10-C2-C3-N1	-178.5 (3)	C1A—C4A—C9A—C8A	175.0 (3)
C10-C2-C3-C16	8.9 (5)	C5A—C4A—C9A—Cl2A	178.4 (2)
N2-C2-C10-C11	25.4 (4)	C5A—C4A—C9A—C8A	-0.8(4)
C3-C2-C10-C11	-156.0 (3)	Cl1A—C5A—C6A—C7A	-178.8 (2)
C3—C2—C10—C15	26.3 (4)	C4A—C5A—C6A—C7A	0.4 (4)
N1-C3-C16-C17	70.2 (4)	C5A—C6A—C7A—C8A	-0.2 (4)
C2-C3-C16-C21	62.2 (4)	C6A—C7A—C8A—C9A	-0.6(4)
N1-C3-C16-C21	-109.4 (3)	C7A—C8A—C9A—Cl2A	-178.1 (2)
C2-C3-C16-C17	-118.2 (3)	C7A—C8A—C9A—C4A	1.1 (4)
C1—C4—C5—C6	174.5 (3)	C2A-C10A-C11A-C12A	175.1 (3)
C1—C4—C5—Cl2	-4.8 (4)	C15A—C10A—C11A—C12A	-0.7 (4)
C5—C4—C9—C8	2.0 (4)	C2A-C10A-C15A-C14A	-176.3 (3)
C1—C4—C9—Cl1	8.0 (4)	C11A—C10A—C15A—C14A	-0.7 (4)
C9—C4—C5—Cl2	179.5 (2)	C10A—C11A—C12A—C13A	1.9 (5)
C9—C4—C5—C6	-1.3 (4)	C11A—C12A—C13A—C14A	-1.6 (5)
C1—C4—C9—C8	-173.8 (3)	C12A—C13A—C14A—C15A	0.3 (4)
C5—C4—C9—Cl1	-176.2 (2)	C13A—C14A—C15A—C10A	0.9 (4)
Cl2—C5—C6—C7	179.1 (2)	C3A—C16A—C17A—C18A	179.6 (3)
C4—C5—C6—C7	-0.2 (4)	C21A—C16A—C17A—C18A	-1.8 (4)
C5—C6—C7—C8	1.0 (4)	C3A—C16A—C21A—C20A	-179.7 (3)
C6—C7—C8—C9	-0.3 (4)	C17A—C16A—C21A—C20A	1.7 (4)
C7—C8—C9—C4	-1.3 (4)	C16A—C17A—C18A—C19A	0.7 (4)
C7—C8—C9—Cl1	176.9 (2)	C17A—C18A—C19A—C20A	0.7 (4)
C11—C10—C15—C14	-0.3 (4)	C18A—C19A—C20A—C21A	-0.8 (4)
C2-C10-C15-C14	177.4 (3)	C19A—C20A—C21A—C16A	-0.4 (4)
C2-C10-C11-C12	-177.2 (3)	N2A—C22A—C23A—C24A	-175.6 (2)
C15—C10—C11—C12	0.5 (4)	C22A—C23A—C24A—C25A	63.0 (3)
C10-C11-C12-C13	-0.3 (5)	C23A—C24A—C25A—C26A	168.4 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/N2/C1-C3 imidazole ring.

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C12A—H12 A ···Cl1 ⁱ	0.95	2.70	3.512 (4)	143
С21—Н21…Сg1 ^{іі}	0.95	2.88	3.734 (3)	151

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) –*x*+1, –*y*, –*z*+1.