supplementary materials


su2593 scheme

Acta Cryst. (2013). E69, m300-m301    [ doi:10.1107/S1600536813011665 ]

Bis{2-[2,5-bis(pyridin-2-yl)-1H-imidazol-4-yl]pyridinium} tetracyanidoplatinate(II) tetrahydrate

R. Gámez-Heredia, R. E. Navarro, H. Höpfl, A. Cruz-Enríquez and J. J. Campos-Gaxiola

Abstract top

The asymmetric unit of the title hydrated complex salt, (C18H14N5)2[Pt(CN)4]·4H2O, consists of one 2-[2,5-bis(pyridin-2-yl)-1H-imidazol-4-yl]pyridinium cation, half a tetracyanidoplatinate(II) dianion, which is located about a crystallographic inversion center, and two water molecules of crystallization. The PtII atom has a square-planar coordination environment, with Pt-CCN distances of 1.992 (4) and 2.000 (4) Å. In the cation, there is an N-H...N hydrogen bond linking adjacent pyridinium and pyridine rings in positions 4 and 5. Despite this, the organic component is non-planar, as shown by the dihedral angles of 10.3 (2), 6.60 (19) and 15.66 (18)° between the planes of the central imidazole ring and the pyridine/pyridinium substituents in the 2-, 4- and 5-positions. In the crystal, cations and anions are linked via O-H...O, O-H...N and N-H...O hydrogen bonds, forming a three-dimensional network. Additional [pi]-[pi], C-H...O and C-H...N contacts provide stabilization to the crystal lattice.

Comment top

Hydrogen bond based inorganic–organic hybrid materials are receiving continuous interest because of their structural, magnetic, optical and electrical properties (Sanchez et al., 2005; Yao et al., 2010; Wang et al., 2010; Lebeau et al., 2011; Pardo et al., 2011; Du et al., 2013). An interesting approach for the preparation of such materials consists in the utilization of supramolecular synthons capable of forming O—H···O, O—H···N and N—H···O hydrogen bonds, through which organic cations and anionic metal complexes are linked to form crystalline inorganic–organic hybrid solids (Crawford et al., 2004; Dechambenoit et al., 2006; Maynard & Sykora, 2008). As a further contribution to this filed of research we report herein on the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound consists of one organic cation of the composition [(C18H14N5)]+, which is located in a general position, half of an independent [Pt(CN)4]2- anion, which is located on a crystallographic inversion center, and two water molecules of crystallization (Fig. 1). The Pt atom has a square-planar coordination environment with Pt—C(cyanido) distances ranging from 1.992 (4) to 2.000 (4) Å. Although two of the three pyridine substituents are linked by an intramolecular N5+—H5'···N4 hydrogen bond (Table 1), the organic component is essentially nonplanar, as shown by the dihedral angles of 10.3 (2), 6.60 (19) and 15.66 (18)°, respectively, formed between the central imidazole ring plane and the pyridine substituents in the 2-, 4- and 5-positions.

In the crystal, the cations and anions are linked by O—H···O, O—H···N and N—H···O hydrogen bonds forming a three-dimensional network (Table 1 and Fig. 2). Within the network, the organic cations are stacked through a series of ππ interactions involving the imidazole and pyridinium rings [Cg1···Cg1i distance = 3.359 (2) Å; Cg1···Cg2ii distance = 3.559 (2) Å; Cg3···Cg3iii distance = 4.023 (3) Å; Cg2···Cg3i distance = 3.929 (2) Å; Cg1= N1/C1/N2/C3/C2; Cg2 = N4/C9-C13 and Cg3 = N3/C4—C8; symmetry codes: (i) –x+1, -y+1, -z; (ii) –x+1, y, 1- z+1/2; (iii)-x+1/2, - y+3/2, -z]. Additionally, there are a number of C—H···O and C—H···N contacts present, thus providing additional stabilization to the crystal lattice (Table 1 and Fig. 2).

Related literature top

For the structural, magnetic, optical and electrical properties of hydrogen-bonded inorganic–organic hybrid materials, see: Anastassiadou et al. (2000); Crawford et al. (2004); Dechambenoit et al. (2006); Du et al. (2013); Lebeau & Innocenzi (2011); Maynard & Sykora (2008); Pardo et al. (2011); Sanchez et al. (2005); Wang et al. (2010); Yao et al. (2010).

Experimental top

The organic component in the title compound, 2-(2,5-di(pyridin-2-yl)-1H-imidazol-4-yl)pyridine, was synthesized according to a previously reported procedure (Anastassiadou et al., 2000). Single crystals of the platinum complex were prepared at room temperature by slow diffusion of a CH3CN/H2O (2 ml, 1:1 v/v) solution containing both Eu(NO3)3 . 6H2O (0.034 g, 0.08 mmol) and K2Pt(CN)4 (0.030 g, 0.08 mmol) into a CH2Cl2 (2 ml) solution of 2-(2,5-di(pyridin-2-yl)-1H-imidazol-4-yl)pyridine (0.024 g, 0.08 mmol). After two weeks, pale yellow crystals were obtained [Yield: 40%]. IR and TGA details are given in the archived CIF.

Refinement top

The C-bound H atoms were positioned geometrically and refined as riding atoms [aryl C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The pyridinium N—H+ and water H atoms were located in difference Fourier maps. They were refined with distance restraints of 0.840 (1)Å, with Uiso(H) = 1.5Ueq(O, N). For the refinement of the water molecules a constraint has also been employed for the H—O—H bond angles (DANG = 1.35 (1) Å). In the final difference Fourier map a large residual density peak, 3.10 eÅ-3, and hole, -2.26 eÅ-3, were found near the Pt atom.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker 2001); data reduction: SAINT-Plus (Bruker 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) -x + 1/2, -y + 3/2, -z + 1].
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound, showing the O—H···O, O—H···N, N—H···O, C—H···O and C—H···N hydrogen bonded three-dimensional supramolecular network (hydrogen bonds are shown as dashed lines; see Table 1 for details).
Bis{2-[2,5-bis(pyridin-2-yl)-1H-imidazol-4-yl]pyridinium} tetracyanidoplatinate(II) tetrahydrate top
Crystal data top
(C18H14N5)2[Pt(CN)4]·4H2OF(000) = 1936
Mr = 971.92Dx = 1.667 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9440 reflections
a = 20.958 (5) Åθ = 2.3–27.7°
b = 12.048 (3) ŵ = 3.69 mm1
c = 15.403 (3) ÅT = 100 K
β = 95.483 (3)°Rectangular prism, yellow
V = 3871.6 (14) Å30.50 × 0.34 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD area detector
diffractometer
3418 independent reflections
Radiation source: fine-focus sealed tube2726 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.26, Tmax = 0.43k = 1414
17095 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0497P)2]
where P = (Fo2 + 2Fc2)/3
3418 reflections(Δ/σ)max < 0.001
286 parametersΔρmax = 3.10 e Å3
8 restraintsΔρmin = 2.27 e Å3
Crystal data top
(C18H14N5)2[Pt(CN)4]·4H2OV = 3871.6 (14) Å3
Mr = 971.92Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.958 (5) ŵ = 3.69 mm1
b = 12.048 (3) ÅT = 100 K
c = 15.403 (3) Å0.50 × 0.34 × 0.28 mm
β = 95.483 (3)°
Data collection top
Bruker SMART CCD area detector
diffractometer
3418 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2726 reflections with I > 2σ(I)
Tmin = 0.26, Tmax = 0.43Rint = 0.066
17095 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078Δρmax = 3.10 e Å3
S = 1.00Δρmin = 2.27 e Å3
3418 reflectionsAbsolute structure: ?
286 parametersFlack parameter: ?
8 restraintsRogers parameter: ?
Special details top

Experimental. IR and TGA details for the title compound: IR(KBr, cm-1): 3406, 3385, 3268, 3100, 2129, 1661, 1596, 1501, 1447, 1235, 1139, 1096, 777, 703. TGA: Calcd. for 4H2O: 7.42. Found: 7.69% (298 - 385 K).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.25000.75000.50000.01672 (10)
N10.96962 (15)1.0885 (2)0.10252 (19)0.0173 (7)
H1'0.973 (2)1.1564 (9)0.114 (3)0.026*
N20.92075 (14)0.9356 (2)0.05054 (18)0.0179 (7)
N30.87601 (18)1.2211 (3)0.0001 (2)0.0226 (8)
N41.09913 (14)0.9336 (2)0.22311 (18)0.0171 (7)
N51.03998 (19)0.7543 (2)0.1645 (2)0.0189 (8)
H5'1.0631 (17)0.798 (3)0.196 (2)0.028*
N60.31880 (15)0.8613 (3)0.6676 (2)0.0256 (8)
N70.32877 (17)0.9085 (3)0.3882 (2)0.0320 (8)
C10.91839 (17)1.0457 (3)0.0535 (2)0.0181 (8)
C21.00799 (17)1.0022 (3)0.1331 (2)0.0168 (8)
C30.97619 (18)0.9069 (3)0.1007 (2)0.0170 (9)
C40.86797 (17)1.1094 (3)0.0042 (2)0.0188 (8)
C50.81594 (17)1.0555 (3)0.0383 (2)0.0238 (9)
H50.81090.97770.03210.029*
C60.77141 (19)1.1165 (3)0.0900 (2)0.0286 (10)
H60.73551.08120.12060.034*
C70.7798 (3)1.2285 (4)0.0962 (3)0.0325 (11)
H70.75021.27180.13250.039*
C80.8316 (2)1.2785 (4)0.0496 (3)0.0290 (10)
H80.83581.35680.05280.035*
C91.07022 (17)1.0222 (3)0.1828 (2)0.0172 (8)
C101.09906 (18)1.1263 (3)0.1866 (2)0.0201 (8)
H101.07801.18840.15880.024*
C111.15875 (19)1.1376 (3)0.2316 (2)0.0218 (9)
H111.17941.20790.23440.026*
C121.18881 (19)1.0470 (3)0.2727 (2)0.0225 (9)
H121.23011.05350.30370.027*
C131.15672 (18)0.9468 (3)0.2671 (2)0.0218 (9)
H131.17650.88420.29590.026*
C140.99006 (18)0.7888 (3)0.1090 (2)0.0155 (8)
C150.95298 (19)0.7094 (3)0.0622 (2)0.0196 (9)
H150.91770.73140.02260.023*
C160.9678 (2)0.5986 (3)0.0734 (3)0.0241 (9)
H160.94240.54390.04200.029*
C171.01988 (19)0.5669 (3)0.1306 (2)0.0230 (9)
H171.03060.49070.13860.028*
C181.05545 (19)0.6473 (3)0.1752 (2)0.0215 (9)
H181.09140.62690.21410.026*
C190.29365 (18)0.8199 (3)0.6075 (2)0.0204 (9)
C200.29937 (19)0.8513 (3)0.4291 (2)0.0220 (9)
O310.96490 (15)0.3159 (2)0.1280 (2)0.0341 (7)
H31A0.9379 (13)0.310 (4)0.0842 (14)0.051*
H32A0.1394 (19)0.481 (2)0.304 (2)0.051*
O320.12373 (15)0.4241 (2)0.27892 (18)0.0324 (7)
H31B0.9448 (15)0.334 (4)0.1704 (15)0.049*
H32B0.135 (2)0.426 (3)0.2280 (11)0.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01960 (15)0.01288 (15)0.01807 (14)0.00058 (8)0.00385 (8)0.00070 (7)
N10.0203 (18)0.0123 (16)0.0202 (16)0.0003 (15)0.0066 (13)0.0003 (14)
N20.0202 (18)0.0155 (17)0.0191 (16)0.0003 (14)0.0083 (13)0.0013 (13)
N30.027 (2)0.0138 (16)0.029 (2)0.0015 (16)0.0114 (15)0.0038 (15)
N40.0224 (18)0.0111 (16)0.0184 (16)0.0006 (14)0.0048 (13)0.0000 (13)
N50.021 (2)0.016 (2)0.0201 (19)0.0058 (14)0.0047 (14)0.0014 (13)
N60.026 (2)0.0281 (19)0.0228 (18)0.0027 (16)0.0053 (15)0.0046 (15)
N70.035 (2)0.031 (2)0.031 (2)0.0065 (17)0.0077 (16)0.0025 (16)
C10.019 (2)0.018 (2)0.0183 (19)0.0004 (17)0.0099 (16)0.0001 (16)
C20.022 (2)0.013 (2)0.0169 (19)0.0014 (17)0.0098 (15)0.0005 (16)
C30.020 (2)0.018 (2)0.0152 (19)0.0019 (17)0.0090 (16)0.0016 (16)
C40.020 (2)0.018 (2)0.0200 (19)0.0058 (17)0.0117 (16)0.0013 (16)
C50.023 (2)0.024 (2)0.025 (2)0.0002 (19)0.0073 (17)0.0027 (17)
C60.026 (2)0.030 (2)0.030 (2)0.006 (2)0.0015 (17)0.0021 (19)
C70.033 (3)0.034 (3)0.030 (3)0.011 (2)0.002 (2)0.006 (2)
C80.035 (3)0.021 (2)0.033 (3)0.005 (2)0.014 (2)0.008 (2)
C90.022 (2)0.016 (2)0.0156 (19)0.0004 (17)0.0100 (15)0.0019 (15)
C100.028 (2)0.0115 (19)0.022 (2)0.0001 (18)0.0067 (16)0.0003 (16)
C110.025 (2)0.015 (2)0.026 (2)0.0034 (18)0.0045 (17)0.0038 (17)
C120.026 (2)0.019 (2)0.022 (2)0.0032 (18)0.0025 (17)0.0033 (17)
C130.028 (2)0.017 (2)0.021 (2)0.0022 (18)0.0054 (17)0.0052 (16)
C140.018 (2)0.0142 (17)0.016 (2)0.0009 (18)0.0092 (16)0.0017 (16)
C150.021 (2)0.0181 (19)0.020 (2)0.0000 (19)0.0057 (16)0.0009 (17)
C160.029 (2)0.019 (2)0.025 (2)0.0070 (19)0.0061 (18)0.0042 (17)
C170.028 (2)0.012 (2)0.030 (2)0.0029 (19)0.0095 (18)0.0008 (17)
C180.025 (2)0.018 (2)0.023 (2)0.0006 (18)0.0058 (16)0.0064 (17)
C190.024 (2)0.019 (2)0.020 (2)0.0026 (18)0.0069 (17)0.0014 (17)
C200.025 (2)0.019 (2)0.022 (2)0.0011 (18)0.0024 (17)0.0068 (17)
O310.0371 (19)0.0219 (17)0.0444 (19)0.0019 (15)0.0096 (14)0.0049 (15)
O320.046 (2)0.0254 (16)0.0277 (16)0.0057 (15)0.0115 (14)0.0006 (13)
Geometric parameters (Å, º) top
Pt1—C201.992 (4)C6—C71.365 (5)
Pt1—C20i1.992 (4)C6—H60.9500
Pt1—C192.000 (4)C7—C81.381 (7)
Pt1—C19i2.000 (4)C7—H70.9500
N1—C11.354 (5)C8—H80.9500
N1—C21.370 (5)C9—C101.391 (5)
N1—H1'0.8400 (11)C10—C111.378 (5)
N2—C11.328 (4)C10—H100.9500
N2—C31.377 (5)C11—C121.383 (5)
N3—C81.338 (6)C11—H110.9500
N3—C41.358 (5)C12—C131.381 (5)
N4—C131.336 (5)C12—H120.9500
N4—C91.349 (4)C13—H130.9500
N5—C181.336 (4)C14—C151.391 (6)
N5—C141.351 (6)C15—C161.377 (6)
N5—H5'0.8400 (11)C15—H150.9500
N6—C191.135 (5)C16—C171.390 (6)
N7—C201.151 (4)C16—H160.9500
C1—C41.459 (5)C17—C181.367 (5)
C2—C31.396 (5)C17—H170.9500
C2—C91.467 (5)C18—H180.9500
C3—C141.455 (5)O31—H31A0.8401 (11)
C4—C51.380 (5)O31—H31B0.8400 (11)
C5—C61.379 (5)O32—H32A0.8401 (11)
C5—H50.9500O32—H32B0.8400 (11)
C20—Pt1—C20i180.00 (17)N3—C8—H8118.6
C20—Pt1—C1988.59 (15)C7—C8—H8118.6
C20i—Pt1—C1991.41 (14)N4—C9—C10121.3 (3)
C20—Pt1—C19i91.41 (14)N4—C9—C2116.6 (3)
C20i—Pt1—C19i88.59 (15)C10—C9—C2122.1 (3)
C19—Pt1—C19i180.000 (1)C11—C10—C9118.7 (3)
C1—N1—C2108.2 (3)C11—C10—H10120.6
C1—N1—H1'123 (3)C9—C10—H10120.6
C2—N1—H1'129 (3)C10—C11—C12120.3 (4)
C1—N2—C3105.3 (3)C10—C11—H11119.8
C8—N3—C4117.2 (4)C12—C11—H11119.8
C13—N4—C9118.9 (3)C13—C12—C11117.6 (4)
C18—N5—C14122.6 (4)C13—C12—H12121.2
C18—N5—H5'115 (3)C11—C12—H12121.2
C14—N5—H5'123 (3)N4—C13—C12123.1 (3)
N2—C1—N1111.6 (3)N4—C13—H13118.4
N2—C1—C4122.3 (3)C12—C13—H13118.4
N1—C1—C4125.9 (3)N5—C14—C15118.5 (4)
N1—C2—C3104.9 (3)N5—C14—C3119.5 (4)
N1—C2—C9121.2 (3)C15—C14—C3122.0 (4)
C3—C2—C9133.8 (3)C16—C15—C14119.6 (4)
N2—C3—C2110.0 (3)C16—C15—H15120.2
N2—C3—C14116.5 (3)C14—C15—H15120.2
C2—C3—C14133.5 (4)C15—C16—C17120.0 (4)
N3—C4—C5122.6 (4)C15—C16—H16120.0
N3—C4—C1117.4 (3)C17—C16—H16120.0
C5—C4—C1120.0 (3)C18—C17—C16118.8 (4)
C6—C5—C4118.9 (4)C18—C17—H17120.6
C6—C5—H5120.5C16—C17—H17120.6
C4—C5—H5120.5N5—C18—C17120.5 (4)
C7—C6—C5118.8 (4)N5—C18—H18119.7
C7—C6—H6120.6C17—C18—H18119.7
C5—C6—H6120.6N6—C19—Pt1178.6 (3)
C6—C7—C8119.6 (5)N7—C20—Pt1178.8 (3)
C6—C7—H7120.2H31A—O31—H31B107.2 (12)
C8—C7—H7120.2H32A—O32—H32B106.3 (12)
N3—C8—C7122.7 (4)
C3—N2—C1—N10.4 (4)C13—N4—C9—C100.4 (5)
C3—N2—C1—C4176.7 (3)C13—N4—C9—C2178.1 (3)
C2—N1—C1—N20.4 (4)N1—C2—C9—N4168.6 (3)
C2—N1—C1—C4175.8 (3)C3—C2—C9—N417.0 (5)
C1—N1—C2—C30.9 (4)N1—C2—C9—C1012.9 (5)
C1—N1—C2—C9175.0 (3)C3—C2—C9—C10161.5 (4)
C1—N2—C3—C21.0 (4)N4—C9—C10—C111.1 (5)
C1—N2—C3—C14179.5 (3)C2—C9—C10—C11177.4 (3)
N1—C2—C3—N21.2 (4)C9—C10—C11—C120.7 (5)
C9—C2—C3—N2173.9 (3)C10—C11—C12—C130.3 (5)
N1—C2—C3—C14179.4 (4)C9—N4—C13—C120.7 (5)
C9—C2—C3—C145.5 (7)C11—C12—C13—N41.0 (5)
C8—N3—C4—C51.4 (5)C18—N5—C14—C150.8 (6)
C8—N3—C4—C1176.1 (3)C18—N5—C14—C3179.9 (3)
N2—C1—C4—N3168.9 (3)N2—C3—C14—N5173.1 (3)
N1—C1—C4—N36.9 (5)C2—C3—C14—N57.4 (6)
N2—C1—C4—C58.7 (5)N2—C3—C14—C156.1 (5)
N1—C1—C4—C5175.5 (3)C2—C3—C14—C15173.3 (4)
N3—C4—C5—C62.5 (5)N5—C14—C15—C160.1 (5)
C1—C4—C5—C6175.0 (3)C3—C14—C15—C16179.1 (4)
C4—C5—C6—C71.0 (6)C14—C15—C16—C170.7 (5)
C5—C6—C7—C81.4 (7)C15—C16—C17—C180.3 (6)
C4—N3—C8—C71.1 (6)C14—N5—C18—C171.2 (6)
C6—C7—C8—N32.6 (7)C16—C17—C18—N50.6 (6)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N40.841.832.609 (4)154
N1—H1···O31ii0.841.942.771 (4)169
O31—H31B···O32iii0.842.022.778 (4)151
O32—H32A···N6i0.842.122.937 (4)164
O31—H31A···N3iv0.842.052.822 (5)152
O32—H32B···N7v0.842.022.854 (5)170
C6—H6···O32vi0.952.683.564 (5)155
C17—H17···O32vii0.952.883.459 (5)120
C18—H18···O32vii0.952.703.375 (5)129
C18—H18···N6viii0.952.503.406 (5)161
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z; (iii) x+1, y, z+1/2; (iv) x, y1, z; (v) x+1/2, y1/2, z+1/2; (vi) x+1/2, y+3/2, z1/2; (vii) x+1, y, z; (viii) x+3/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5'···N40.841.832.609 (4)154
N1—H1'···O31i0.841.942.771 (4)169
O31—H31B···O32ii0.842.022.778 (4)151
O32—H32A···N6iii0.842.122.937 (4)164
O31—H31A···N3iv0.842.052.822 (5)152
O32—H32B···N7v0.842.022.854 (5)170
C6—H6···O32vi0.952.683.564 (5)155
C17—H17···O32vii0.952.883.459 (5)120
C18—H18···O32vii0.952.703.375 (5)129
C18—H18···N6viii0.952.503.406 (5)161
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1/2; (iii) x+1/2, y+3/2, z+1; (iv) x, y1, z; (v) x+1/2, y1/2, z+1/2; (vi) x+1/2, y+3/2, z1/2; (vii) x+1, y, z; (viii) x+3/2, y+3/2, z+1.
Acknowledgements top

This work was supported financially by the Universidad Autónoma de Sinaloa (PROFAPI 2012/032). RGH thanks the Consejo Nacional de Ciencia y Tecnologia (CONACYT) for support in the form of a scholarship.

references
References top

Anastassiadou, M., Baziard-Mouysset, G. & &Payard, M. (2000). Synthesis, 13, 1814–1816.

Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Crawford, P. C., Gillon, A. L., Green, J., Orpen, A. G., Podesta, T. J. & Pritchard, S. V. (2004). CrystEngComm, 6, 419–428.

Dechambenoit, P., Ferlay, S., Hosseini, M. W., Planeix, J. M. & Kyritsakas, N. (2006). New J. Chem. 30, 1403–1410.

Du, F., Zhang, H., Tian, C. & Du, S. (2013). Cryst. Growth Des. 13, 1736–1742.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Lebeau, B. & Innocenzi, P. (2011). Chem. Soc. Rev. 40, 886–906.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Maynard, B. A. & Sykora, R. E. (2008). Acta Cryst. E64, m138–m139.

Pardo, R., Zayat, M. & Levy, D. (2011). Chem. Soc. Rev. 40, 672–687.

Sanchez, C., Julián, B., Belleville, P. & Popall, M. (2005). J. Mater. Chem. 15, 3559–3592.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, M. S., Xu, G., Zhang, Z. J. & &Guo, G. C. (2010). Chem. Commun. 46, 361–376.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yao, H. B., Gao, M. R. & Yu, S. H. (2010). Nanoscale, 2, 323–334.