

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aquatrimethyl[2-(4-methylpyrimidin-2-ylsulfanyl)acetato- κO]tin(IV)

Zhiqing Gao,^a Junhong Zhang,^b* Xuyi Hao,^c Daqi Wang^b and Tingting Zhang^b

^aDongcheng College of Liaocheng University, Shandong 252059, People's Republic of China, ^bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China, and ^cTancheng Middle School, Linyin 276000, People's Republic of China

Correspondence e-mail: zhangjunhong@lcu.edu.cn

Received 28 April 2013; accepted 8 May 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.011 Å; R factor = 0.047; wR factor = 0.132; data-to-parameter ratio = 16.8.

In the title compound, $[Sn(CH_3)_3(C_7H_7N_2O_2S)(H_2O)]$, the Sn^{IV} atom has a distorted trigonal–bipyramidal coordination geometry, with one carboxylate O atom of the 2-(4-methyl-pyrimidine-2-sulfanyl)acetate ligand and the O atom of a water molecule in axial positions, and three methyl groups in equatorial positions. In the crystal, molecules are linked *via* $O-H\cdots O$ and $O-H\cdots N$ hydrogen bonds, forming double-stranded chains propagating along [010].

Related literature

For related structures, see: Zhang et al. (2007); Zhu et al. (2011).

Experimental

Crystal data $[Sn(CH_3)_3(C_7H_7N_2O_2S)(H_2O)]$ $M_r = 365.01$

Monoclinic, $P2_1/c$ a = 7.7658 (4) Å metal-organic compounds

Cu $K\alpha$ radiation $\mu = 15.00 \text{ mm}^{-1}$

 $0.05 \times 0.04 \times 0.04$ mm

T = 293 K

b = 11.0901 (4) Å c = 18.8261 (8) Å $\beta = 113.575 (4)^{\circ}$ $V = 1486.05 (11) \text{ Å}^{3}$ Z = 4

Data collection

Kcalibur (Eos, Gemini)	8393 measured reflections
diffractometer	2666 independent reflections
Absorption correction: multi-scan	2151 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2007)	$R_{\rm int} = 0.059$
$T_{\min} = 0.521, \ T_{\max} = 0.585$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 159 parameters $wR(F^2) = 0.132$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 1.52$ e Å $^{-3}$ 2664 reflections $\Delta \rho_{min} = -0.78$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} O3 - H3D \cdots O1^{i} \\ O3 - H3F \cdots N1^{ii} \end{array}$	0.85 0.85	2.03 2.14	2.798 (6) 2.884 (7)	149 146
	1	. 1 (11)		

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x, y + 1, z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Liaocheng University Foundation (xo9013), the Liaocheng University State Key Laboratory of Crystal Materials (SF2012068), the Project of Shandong Provincial Education Department (J12LD13) and Liaocheng University Funds (31805) for Young Scientists for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2595).

References

- Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, J.-H., Ma, C.-L. & Zhang, R.-F. (2007). Acta Cryst. E63, m2161.
- Zhu, Q. & Zhang, R. (2011). Acta Cryst. E67, m1834.

supporting information

Acta Cryst. (2013). E69, m313 [doi:10.1107/S1600536813012622]

Aquatrimethyl[2-(4-methylpyrimidin-2-ylsulfanyl)acetato-κO]tin(IV)

Zhiqing Gao, Junhong Zhang, Xuyi Hao, Daqi Wang and Tingting Zhang

S1. Comment

The title compound is a trimethyltin ester of 4-methylpyrimidine-2-thioglycolic acid, Fig. 1. The geometry of tin atom, Sn1, is a slightly distorted trigonal bipyramid, surrounded axially by atom O2 of the ligand and atom O3 of a water molecule. The axial angle O2—Sn1—O3 is 176.66 (16) Å close to a linear arrangement. Three carbon atoms of the methyl groups are located in the equatorially plane and the sum of the trigonal C—Sn—C angles is 358.1°, which illustrates that the three methyl C atoms and the tin atom are nearly coplanar. The Sn—O distances of 2.144 (4) Å and 2.488 (5) Å, are a little longer than the covalent bond length of tin and oxygen (Zhang *et al.*, 2007) but similar to the same distances reported for other triorganotin polymeric structures (Zhu *et al.*, 2011).

In the crystal, molecules are linked via O-H···O and O-H···N hydrogen bonds forming double-stranded chains propagating along [010]; see Table 1 and Fig. 2.

S2. Experimental

The reaction was carried out under an atmosphere of nitrogen. 4-methylpyrimidine-2-thioglycolic acid (1 mmol) and sodium ethanol (1 mmol) were added to a stirred solution of ethanol (30 ml) in a Schlenk flask and stirred for 30 min. Trimethyltin chloride (1 mmol) was then added to the reactor and the reaction mixture was stirred for 12 h at 353 K. The resulting clear solution was evaporated under vacuum. The product was crystallized from dichloromethane to yield colourless block-like crystals of the title compound [Yield 80%; M.p. 430 K]. Anal. Calcd (%) for $C_{10}H_{18}N_2O_3SSn$ (Mr = 365.01): C, 32.90; H, 4.97; N, 7.67; Found (%): C, 32.87; H, 4.94; N, 7.71.

S3. Refinement

The water molecule H atoms were placed in calculated positions and treated as riding atoms: O-H = 0.85 Å with $U_{iso}(H) = 1.5U_{eq}(O)$. The C-bound H atoms were also placed in calculated positions and treated as riding atoms: C—H = 0.93 and 0.96 Å, for CH and CH₃ H atoms, respectively, with $U_{iso}(H) = 1.5U_{eq}(C)$ for other H atoms. In the final cycles of refinement two reflections were omitted as $(I_{obs}-I_{calc})/\Sigma W > 10$.

Figure 1

The molecular structure of the title complex, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines; see Table 1 for details.

Aquatrimethyl[2-(4-methylpyrimidin-2-ylsulfanyl)acetato-*kO*]tin(IV)

Crystal data	
$[Sn(CH_3)_3(C_7H_7N_2O_2S)(H_2O)]$	F(000) = 728
$M_r = 365.01$	$D_{\rm x} = 1.631 {\rm Mg m^{-3}}$
Monoclinic, $P2_1/c$	Cu $K\alpha$ radiation, $\lambda = 1.54184$ Å
Hall symbol: -P 2ybc	Cell parameters from 2652 reflections
a = 7.7658 (4) Å	$\theta = 4.0-70.5^{\circ}$
b = 11.0901 (4) Å	$\mu = 15.00 \text{ mm}^{-1}$
c = 18.8261 (8) Å	T = 293 K
$\beta = 113.575 \ (4)^{\circ}$	Block, colourless
$V = 1486.05 (11) Å^3$	$0.05 \times 0.04 \times 0.04 \text{ mm}$
Z = 4	

Data collection

Xcalibur (Eos, Gemini) [CHECK! BRUKER SOFTWARE?] diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 16.2563 pixels mm ⁻¹ phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007)	$T_{\min} = 0.521, T_{\max} = 0.585$ 8393 measured reflections 2666 independent reflections 2151 reflections with $I > 2\sigma(I)$ $R_{int} = 0.059$ $\theta_{max} = 67.3^\circ, \theta_{min} = 4.7^\circ$ $h = -6 \rightarrow 9$ $k = -13 \rightarrow 13$ $l = -22 \rightarrow 21$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.132$ S = 1.05 2664 reflections 159 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0753P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.52$ e Å ⁻³ $\Delta\rho_{min} = -0.78$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4} Extinction coefficient: 0.00176 (18)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.88830 (6)	1.02871 (3)	0.61937 (2)	0.0477 (2)	
S1	0.8813 (3)	0.51496 (13)	0.57463 (11)	0.0572 (6)	
01	1.0216 (7)	0.7546 (4)	0.6551 (2)	0.0631 (14)	
O2	0.8531 (6)	0.8672 (4)	0.5524 (2)	0.0559 (14)	
O3	0.9257 (8)	1.2230 (4)	0.6901 (3)	0.082 (2)	
N1	0.6645 (8)	0.4207 (4)	0.6350 (3)	0.0534 (18)	
N2	0.5982 (8)	0.6263 (5)	0.5937 (3)	0.0566 (17)	
C1	0.7227 (12)	1.1295 (7)	0.5191 (4)	0.075 (3)	
C2	1.1824 (10)	1.0401 (6)	0.6541 (5)	0.071 (3)	
C3	0.7556 (13)	0.9649 (7)	0.6896 (5)	0.074 (3)	
C4	0.9201 (9)	0.7672 (5)	0.5856 (4)	0.049 (2)	
C5	0.8680 (10)	0.6603 (5)	0.5312 (3)	0.054 (2)	
C6	0.6941 (9)	0.5235 (5)	0.6040 (4)	0.0457 (19)	
C8	0.4562 (10)	0.6241 (8)	0.6160 (4)	0.068 (3)	
C9	0.4131 (11)	0.5250 (8)	0.6490 (5)	0.071 (3)	

C10	0.5225 (10)	0.4220 (6)	0.6579 (4)	0.060(2)	
C12	0.4868 (13)	0.3083 (7)	0.6930 (5)	0.091 (4)	
H1A	0.61760	1.08170	0.48660	0.1130*	
H1B	0.79770	1.15070	0.49100	0.1130*	
H1C	0.67800	1.20150	0.53440	0.1130*	
H2A	1.23750	1.07840	0.70390	0.1070*	
H2B	1.20970	1.08670	0.61690	0.1070*	
H2C	1.23360	0.96050	0.65730	0.1070*	
H3A	0.72540	0.88110	0.67880	0.1110*	
H3B	0.64240	1.00990	0.67900	0.1110*	
H3C	0.83830	0.97440	0.74320	0.1110*	
H3D	0.96840	1.20950	0.73860	0.1230*	
H3F	0.81920	1.25720	0.67570	0.1230*	
H5A	0.94970	0.66000	0.50340	0.0650*	
H5B	0.74050	0.67200	0.49320	0.0650*	
H8	0.38290	0.69300	0.60890	0.0820*	
H9	0.31430	0.52630	0.66500	0.0850*	
H12A	0.47470	0.24180	0.65860	0.1360*	
H12B	0.37290	0.31660	0.70110	0.1360*	
H12C	0.58980	0.29360	0.74170	0.1360*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0622 (3)	0.0338 (3)	0.0444 (3)	-0.0027 (2)	0.0186 (2)	0.0027 (2)
S 1	0.0757 (11)	0.0341 (7)	0.0735 (11)	-0.0025 (7)	0.0420 (9)	-0.0056 (7)
01	0.082 (3)	0.050 (2)	0.047 (2)	-0.007(2)	0.015 (2)	-0.0018 (19)
O2	0.074 (3)	0.038 (2)	0.051 (2)	-0.004 (2)	0.020 (2)	-0.0014 (18)
O3	0.121 (5)	0.046 (3)	0.067 (3)	0.009 (3)	0.024 (3)	-0.009(2)
N1	0.072 (4)	0.035 (2)	0.054 (3)	-0.010 (2)	0.026 (3)	-0.004(2)
N2	0.059 (3)	0.048 (3)	0.064 (3)	0.005 (2)	0.026 (3)	0.010 (2)
C1	0.103 (6)	0.057 (4)	0.053 (4)	0.006 (4)	0.018 (4)	0.005 (3)
C2	0.052 (4)	0.056 (4)	0.091 (6)	-0.013 (3)	0.013 (4)	-0.010 (4)
C3	0.098 (6)	0.065 (5)	0.079 (5)	0.005 (4)	0.057 (5)	0.010 (4)
C4	0.063 (4)	0.041 (3)	0.051 (4)	-0.018 (3)	0.030 (3)	-0.011 (3)
C5	0.081 (5)	0.036 (3)	0.053 (3)	-0.012 (3)	0.035 (3)	-0.004(3)
C6	0.054 (4)	0.034 (3)	0.047 (3)	-0.009(2)	0.018 (3)	-0.006(2)
C8	0.054 (4)	0.076 (5)	0.071 (5)	0.014 (4)	0.022 (4)	0.018 (4)
C9	0.053 (4)	0.093 (6)	0.065 (5)	0.001 (4)	0.023 (4)	0.002 (4)
C10	0.069 (4)	0.058 (4)	0.049 (3)	-0.022 (3)	0.021 (3)	-0.003 (3)
C12	0.131 (8)	0.067 (5)	0.088 (6)	-0.033 (5)	0.059 (6)	0.004 (4)

Geometric parameters (Å, °)

Sn1—O2	2.144 (4)	C10—C12	1.500 (11)
Sn1—O3	2.488 (5)	C1—H1A	0.9600
Sn1—C1	2.127 (7)	C1—H1B	0.9600
Sn1—C2	2.113 (9)	C1—H1C	0.9600

G 1 G2	2 000 (10)		0.0700
Sn1—C3	2.098 (10)	C2—H2A	0.9600
SI-C5	1.792 (6)	С2—Н2В	0.9600
S1—C6	1.752 (8)	C2—H2C	0.9600
O1—C4	1.236 (8)	С3—НЗА	0.9600
O2—C4	1.277 (7)	C3—H3B	0.9600
O3—H3D	0.8500	C3—H3C	0.9600
O3—H3F	0.8500	С5—Н5А	0.9700
N1—C6	1.342 (8)	С5—Н5В	0.9700
N1-C10	1.335 (10)	C8—H8	0.9300
N2—C8	1.328 (10)	С9—Н9	0.9300
N2—C6	1.333 (8)	C12—H12A	0.9600
C4—C5	1.512 (8)	C12—H12B	0.9600
C8—C9	1.368 (12)	C12—H12C	0.9600
C9—C10	1.393 (12)		
$\Omega^2 = Sn1 = \Omega^3$	176 66 (16)	Sn1—C1—H1C	109.00
02 - Sn1 - C1	91.6.(2)	H1A - C1 - H1B	109.00
02 - 5n1 - C1 02 - 5n1 - C2	95.7(2)	H1A - C1 - H1C	109.00
$O_2 = Sn_1 = C_2$	95.7(2)		109.00
02 - 511 - C3	90.3 (2) 85 4 (2)	$S_{p1} = C_{1} = H_{1}$	109.00
$O_3 = S_{m1} = C_1$	83.4 (2)	SIII - C2 - H2A	109.00
03 - 511 - C2	84.4 (2)	SIII—C2—H2B	109.00
03-Sn1-C3	80.4 (3)	Sfil—C2—H2C	109.00
CI—SnI—C2	116.0 (3)	H2A—C2—H2B	109.00
Cl—Snl—C3	117.5 (4)	H2A—C2—H2C	110.00
C2—Sn1—C3	124.6 (3)	H2B—C2—H2C	110.00
C5—S1—C6	101.1 (3)	Sn1—C3—H3A	109.00
Sn1—O2—C4	120.4 (4)	Sn1—C3—H3B	109.00
Sn1—O3—H3F	109.00	Sn1—C3—H3C	110.00
H3D—O3—H3F	109.00	НЗА—СЗ—НЗВ	109.00
Sn1—O3—H3D	110.00	НЗА—СЗ—НЗС	109.00
C6—N1—C10	116.0 (6)	H3B—C3—H3C	109.00
C6—N2—C8	115.1 (6)	S1—C5—H5A	108.00
O1—C4—C5	120.9 (5)	S1—C5—H5B	108.00
O1—C4—O2	125.4 (6)	C4—C5—H5A	108.00
O2—C4—C5	113.8 (5)	C4—C5—H5B	108.00
S1—C5—C4	116.4 (4)	H5A—C5—H5B	107.00
S1—C6—N1	113.5 (5)	N2—C8—H8	119.00
S1—C6—N2	119.1 (5)	С9—С8—Н8	119.00
N1 - C6 - N2	1274(7)	C8—C9—H9	121.00
$N_{2} - C_{8} - C_{9}$	127.9(8)	C10-C9-H9	121.00
$C_{8} - C_{9} - C_{10}$	122.9(0) 117.7(8)	C10 - C12 - H12A	109.00
N1_C10_C9	120 9 (7)	C10 - C12 - H12R	109.00
$N1 - C10 - C_{2}$	120.9(7) 117 1(7)	C10-C12-H12B C10-C12-H12C	109.00
C_{0} C_{10} C_{12}	11/.1(/) 122 1 (9)	$\begin{array}{c} 10 \\ 12 \\ 1120 \\$	109.00
C_{7} C_{10} C_{12}	122.1 (0)	$\Pi 12A = C 12 = \Pi 12D$	109.00
SIII—CI—HIA	109.00	H12A - C12 - H12C	109.00
Sn1—C1—H1B	109.00	H12B—C12—H12C	109.00
C1—Sn1—O2—C4	-176.2 (6)	C6—N1—C10—C9	0.4 (10)
	• /		. /

63 6 1 63 64 (7		C()11 C10 C12	170.0 (()
$C_2 = Sn_1 = O_2 = C_4 $ 6/.	.5 (6)	C6—N1—C10—C12	-1/9.8 (6)
C3—Sn1—O2—C4 -58	58.3 (6)	C8—N2—C6—S1	178.6 (5)
C6—S1—C5—C4 69.	.3 (6)	C8—N2—C6—N1	-1.1 (10)
C5—S1—C6—N1 176	6.1 (5)	C6—N2—C8—C9	1.6 (10)
C5—S1—C6—N2 -3.	6.6 (6)	O1—C4—C5—S1	22.7 (10)
Sn1—O2—C4—O1 –6.	5.7 (10)	O2—C4—C5—S1	-158.6 (5)
Sn1—O2—C4—C5 174	4.7 (5)	N2—C8—C9—C10	-1.2 (12)
C10—N1—C6—S1 -1	79.6 (5)	C8—C9—C10—N1	0.1 (11)
C10—N1—C6—N2 0.1	1 (10)	C8—C9—C10—C12	-179.7 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O3—H3D…O1 ⁱ	0.85	2.03	2.798 (6)	149
O3—H3F…N1 ⁱⁱ	0.85	2.14	2.884 (7)	146

Symmetry codes: (i) -x+2, y+1/2, -z+3/2; (ii) x, y+1, z.