supplementary materials


su2595 scheme

Acta Cryst. (2013). E69, m313    [ doi:10.1107/S1600536813012622 ]

Aquatrimethyl[2-(4-methylpyrimidin-2-ylsulfanyl)acetato-[kappa]O]tin(IV)

Z. Gao, J. Zhang, X. Hao, D. Wang and T. Zhang

Abstract top

In the title compound, [Sn(CH3)3(C7H7N2O2S)(H2O)], the SnIV atom has a distorted trigonal-bipyramidal coordination geometry, with one carboxylate O atom of the 2-(4-methylpyrimidine-2-sulfanyl)acetate ligand and the O atom of a water molecule in axial positions, and three methyl groups in equatorial positions. In the crystal, molecules are linked via O-H...O and O-H...N hydrogen bonds, forming double-stranded chains propagating along [010].

Comment top

The title compound is a trimethyltin ester of 4-methylpyrimidine-2-thioglycolic acid, Fig. 1. The geometry of tin atom, Sn1, is a slightly distorted trigonal bipyramid, surrounded axially by atom O2 of the ligand and atom O3 of a water molecule. The axial angle O2—Sn1—O3 is 176.66 (16) Å close to a linear arrangement. Three carbon atoms of the methyl groups are located in the equatorially plane and the sum of the trigonal C—Sn—C angles is 358.1°, which illustrates that the three methyl C atoms and the tin atom are nearly coplanar. The Sn—O distances of 2.144 (4) Å and 2.488 (5) Å, are a little longer than the covalent bond length of tin and oxygen (Zhang et al., 2007) but similar to the same distances reported for other triorganotin polymeric structures (Zhu et al., 2011).

In the crystal, molecules are linked via O-H···O and O-H···N hydrogen bonds forming double-stranded chains propagating along [010]; see Table 1 and Fig. 2.

Related literature top

For related structures, see: Zhang et al. (2007); Zhu et al. (2011).

Experimental top

The reaction was carried out under an atmosphere of nitrogen. 4-methylpyrimidine-2-thioglycolic acid (1 mmol) and sodium ethanol (1 mmol) were added to a stirred solution of ethanol (30 ml) in a Schlenk flask and stirred for 30 min. Trimethyltin chloride (1 mmol) was then added to the reactor and the reaction mixture was stirred for 12 h at 353 K. The resulting clear solution was evaporated under vacuum. The product was crystallized from dichloromethane to yield colourless block-like crystals of the title compound [Yield 80%; M.p. 430 K]. Anal. Calcd (%) for C10H18N2O3SSn (Mr = 365.01): C, 32.90; H, 4.97; N, 7.67; Found (%): C, 32.87; H, 4.94; N, 7.71.

Refinement top

The water molecule H atoms were placed in calculated positions and treated as riding atoms: O-H = 0.85 Å with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were also placed in calculated positions and treated as riding atoms: C—H = 0.93 and 0.96 Å, for CH and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. In the final cycles of refinement two reflections were omitted as (Iobs-Icalc)/ΣW > 10.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines; see Table 1 for details.
Aquatrimethyl[2-(4-methylpyrimidin-2-ylsulfanyl)acetato-κO]tin(IV) top
Crystal data top
[Sn(CH3)3(C7H7N2O2S)(H2O)]F(000) = 728
Mr = 365.01Dx = 1.631 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 2652 reflections
a = 7.7658 (4) Åθ = 4.0–70.5°
b = 11.0901 (4) ŵ = 15.00 mm1
c = 18.8261 (8) ÅT = 293 K
β = 113.575 (4)°Block, colourless
V = 1486.05 (11) Å30.05 × 0.04 × 0.04 mm
Z = 4
Data collection top
Xcalibur (Eos, Gemini) [CHECK! BRUKER SOFTWARE?]
diffractometer
2666 independent reflections
Radiation source: Enhance (Cu) X-ray Source2151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 16.2563 pixels mm-1θmax = 67.3°, θmin = 4.7°
phi and ω scansh = 69
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1313
Tmin = 0.521, Tmax = 0.585l = 2221
8393 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0753P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2664 reflectionsΔρmax = 1.52 e Å3
159 parametersΔρmin = 0.78 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00176 (18)
Crystal data top
[Sn(CH3)3(C7H7N2O2S)(H2O)]V = 1486.05 (11) Å3
Mr = 365.01Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.7658 (4) ŵ = 15.00 mm1
b = 11.0901 (4) ÅT = 293 K
c = 18.8261 (8) Å0.05 × 0.04 × 0.04 mm
β = 113.575 (4)°
Data collection top
Xcalibur (Eos, Gemini) [CHECK! BRUKER SOFTWARE?]
diffractometer
2666 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2151 reflections with I > 2σ(I)
Tmin = 0.521, Tmax = 0.585Rint = 0.059
8393 measured reflectionsθmax = 67.3°
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.132Δρmax = 1.52 e Å3
S = 1.05Δρmin = 0.78 e Å3
2664 reflectionsAbsolute structure: ?
159 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.88830 (6)1.02871 (3)0.61937 (2)0.0477 (2)
S10.8813 (3)0.51496 (13)0.57463 (11)0.0572 (6)
O11.0216 (7)0.7546 (4)0.6551 (2)0.0631 (14)
O20.8531 (6)0.8672 (4)0.5524 (2)0.0559 (14)
O30.9257 (8)1.2230 (4)0.6901 (3)0.082 (2)
N10.6645 (8)0.4207 (4)0.6350 (3)0.0534 (18)
N20.5982 (8)0.6263 (5)0.5937 (3)0.0566 (17)
C10.7227 (12)1.1295 (7)0.5191 (4)0.075 (3)
C21.1824 (10)1.0401 (6)0.6541 (5)0.071 (3)
C30.7556 (13)0.9649 (7)0.6896 (5)0.074 (3)
C40.9201 (9)0.7672 (5)0.5856 (4)0.049 (2)
C50.8680 (10)0.6603 (5)0.5312 (3)0.054 (2)
C60.6941 (9)0.5235 (5)0.6040 (4)0.0457 (19)
C80.4562 (10)0.6241 (8)0.6160 (4)0.068 (3)
C90.4131 (11)0.5250 (8)0.6490 (5)0.071 (3)
C100.5225 (10)0.4220 (6)0.6579 (4)0.060 (2)
C120.4868 (13)0.3083 (7)0.6930 (5)0.091 (4)
H1A0.617601.081700.486600.1130*
H1B0.797701.150700.491000.1130*
H1C0.678001.201500.534400.1130*
H2A1.237501.078400.703900.1070*
H2B1.209701.086700.616900.1070*
H2C1.233600.960500.657300.1070*
H3A0.725400.881100.678800.1110*
H3B0.642401.009900.679000.1110*
H3C0.838300.974400.743200.1110*
H3D0.968401.209500.738600.1230*
H3F0.819201.257200.675700.1230*
H5A0.949700.660000.503400.0650*
H5B0.740500.672000.493200.0650*
H80.382900.693000.608900.0820*
H90.314300.526300.665000.0850*
H12A0.474700.241800.658600.1360*
H12B0.372900.316600.701100.1360*
H12C0.589800.293600.741700.1360*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0622 (3)0.0338 (3)0.0444 (3)0.0027 (2)0.0186 (2)0.0027 (2)
S10.0757 (11)0.0341 (7)0.0735 (11)0.0025 (7)0.0420 (9)0.0056 (7)
O10.082 (3)0.050 (2)0.047 (2)0.007 (2)0.015 (2)0.0018 (19)
O20.074 (3)0.038 (2)0.051 (2)0.004 (2)0.020 (2)0.0014 (18)
O30.121 (5)0.046 (3)0.067 (3)0.009 (3)0.024 (3)0.009 (2)
N10.072 (4)0.035 (2)0.054 (3)0.010 (2)0.026 (3)0.004 (2)
N20.059 (3)0.048 (3)0.064 (3)0.005 (2)0.026 (3)0.010 (2)
C10.103 (6)0.057 (4)0.053 (4)0.006 (4)0.018 (4)0.005 (3)
C20.052 (4)0.056 (4)0.091 (6)0.013 (3)0.013 (4)0.010 (4)
C30.098 (6)0.065 (5)0.079 (5)0.005 (4)0.057 (5)0.010 (4)
C40.063 (4)0.041 (3)0.051 (4)0.018 (3)0.030 (3)0.011 (3)
C50.081 (5)0.036 (3)0.053 (3)0.012 (3)0.035 (3)0.004 (3)
C60.054 (4)0.034 (3)0.047 (3)0.009 (2)0.018 (3)0.006 (2)
C80.054 (4)0.076 (5)0.071 (5)0.014 (4)0.022 (4)0.018 (4)
C90.053 (4)0.093 (6)0.065 (5)0.001 (4)0.023 (4)0.002 (4)
C100.069 (4)0.058 (4)0.049 (3)0.022 (3)0.021 (3)0.003 (3)
C120.131 (8)0.067 (5)0.088 (6)0.033 (5)0.059 (6)0.004 (4)
Geometric parameters (Å, º) top
Sn1—O22.144 (4)C10—C121.500 (11)
Sn1—O32.488 (5)C1—H1A0.9600
Sn1—C12.127 (7)C1—H1B0.9600
Sn1—C22.113 (9)C1—H1C0.9600
Sn1—C32.098 (10)C2—H2A0.9600
S1—C51.792 (6)C2—H2B0.9600
S1—C61.752 (8)C2—H2C0.9600
O1—C41.236 (8)C3—H3A0.9600
O2—C41.277 (7)C3—H3B0.9600
O3—H3D0.8500C3—H3C0.9600
O3—H3F0.8500C5—H5A0.9700
N1—C61.342 (8)C5—H5B0.9700
N1—C101.335 (10)C8—H80.9300
N2—C81.328 (10)C9—H90.9300
N2—C61.333 (8)C12—H12A0.9600
C4—C51.512 (8)C12—H12B0.9600
C8—C91.368 (12)C12—H12C0.9600
C9—C101.393 (12)
O2—Sn1—O3176.66 (16)Sn1—C1—H1C109.00
O2—Sn1—C191.6 (2)H1A—C1—H1B109.00
O2—Sn1—C295.7 (2)H1A—C1—H1C109.00
O2—Sn1—C396.3 (2)H1B—C1—H1C109.00
O3—Sn1—C185.4 (2)Sn1—C2—H2A109.00
O3—Sn1—C284.4 (2)Sn1—C2—H2B109.00
O3—Sn1—C386.4 (3)Sn1—C2—H2C109.00
C1—Sn1—C2116.0 (3)H2A—C2—H2B109.00
C1—Sn1—C3117.5 (4)H2A—C2—H2C110.00
C2—Sn1—C3124.6 (3)H2B—C2—H2C110.00
C5—S1—C6101.1 (3)Sn1—C3—H3A109.00
Sn1—O2—C4120.4 (4)Sn1—C3—H3B109.00
Sn1—O3—H3F109.00Sn1—C3—H3C110.00
H3D—O3—H3F109.00H3A—C3—H3B109.00
Sn1—O3—H3D110.00H3A—C3—H3C109.00
C6—N1—C10116.0 (6)H3B—C3—H3C109.00
C6—N2—C8115.1 (6)S1—C5—H5A108.00
O1—C4—C5120.9 (5)S1—C5—H5B108.00
O1—C4—O2125.4 (6)C4—C5—H5A108.00
O2—C4—C5113.8 (5)C4—C5—H5B108.00
S1—C5—C4116.4 (4)H5A—C5—H5B107.00
S1—C6—N1113.5 (5)N2—C8—H8119.00
S1—C6—N2119.1 (5)C9—C8—H8119.00
N1—C6—N2127.4 (7)C8—C9—H9121.00
N2—C8—C9122.9 (8)C10—C9—H9121.00
C8—C9—C10117.7 (8)C10—C12—H12A109.00
N1—C10—C9120.9 (7)C10—C12—H12B109.00
N1—C10—C12117.1 (7)C10—C12—H12C109.00
C9—C10—C12122.1 (8)H12A—C12—H12B109.00
Sn1—C1—H1A109.00H12A—C12—H12C109.00
Sn1—C1—H1B109.00H12B—C12—H12C109.00
C1—Sn1—O2—C4176.2 (6)C6—N1—C10—C90.4 (10)
C2—Sn1—O2—C467.5 (6)C6—N1—C10—C12179.8 (6)
C3—Sn1—O2—C458.3 (6)C8—N2—C6—S1178.6 (5)
C6—S1—C5—C469.3 (6)C8—N2—C6—N11.1 (10)
C5—S1—C6—N1176.1 (5)C6—N2—C8—C91.6 (10)
C5—S1—C6—N23.6 (6)O1—C4—C5—S122.7 (10)
Sn1—O2—C4—O16.7 (10)O2—C4—C5—S1158.6 (5)
Sn1—O2—C4—C5174.7 (5)N2—C8—C9—C101.2 (12)
C10—N1—C6—S1179.6 (5)C8—C9—C10—N10.1 (11)
C10—N1—C6—N20.1 (10)C8—C9—C10—C12179.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3D···O1i0.852.032.798 (6)149
O3—H3F···N1ii0.852.142.884 (7)146
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3D···O1i0.852.032.798 (6)149
O3—H3F···N1ii0.852.142.884 (7)146
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x, y+1, z.
Acknowledgements top

The authors thank the Liaocheng University Foundation (xo9013), the Liaocheng University State Key Laboratory of Crystal Materials (SF2012068), the Project of Shandong Provincial Education Department (J12LD13) and Liaocheng University Funds (31805) for Young Scientists for financial support.

references
References top

Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zhang, J.-H., Ma, C.-L. & Zhang, R.-F. (2007). Acta Cryst. E63, m2161.

Zhu, Q. & Zhang, R. (2011). Acta Cryst. E67, m1834.