supplementary materials


su2596 scheme

Acta Cryst. (2013). E69, o892    [ doi:10.1107/S1600536813012804 ]

8,13,26-Trioxa-23-thia-21-azapentacyclo[18.6.0.02,7.014,19.021,25]hexacosa-2(7),3,5,14,16,18-hexaene

S. K. Devi, T. Srinivasan, S. Purushothaman, R. Raghunathan and D. Velmurugan

Abstract top

In the title compound, C21H23NO3S, both the thiazole and oxazolidine rings adopt twist conformations. The mean plane of the thiazole ring makes a dihedral angle of 61.02 (7)° with the oxazolidine ring mean plane, and dihedral angles of 22.72 (6) and 75.07 (6)° with the benzene rings. The benzene rings are almost perpendicular to one another, making a dihedral angle of 89.14 (6)°. There are bifurcated intramolecular C-H...O hydrogen bonds in the molecular structure. In the crystal, molecules are linked via C-H...[pi] interactions, forming chains propagating along [100].

Comment top

Thiazole derivatives have a variety of physiological effects, such as antiinflammatory (Guo et al., 2006) and antimicrobial (Karegoudar et al., 2008). Against this background, we report herein on the crystal structure of the title thiazole derivative.

In the title compound, Fig. 1, both the thiazole ring (S1/N1/C19-C21) and the oxazolidine ring (O3/N1/C7/C8/C19) adopt twist conformations. The former is twisted on bond S1-C21, while the latter is twisted on bond C8-C7. Their mean planes are inclined to one another by 61.02 (7)°. The mean plane of the thiazole ring makes a dihedral angle of 22.72 (6)° with benzene ring (C1-C6), and a dihedral angle of 75.07 (6)° with the other benzene ring (C9-C14). The dihedral angle between the two benzene rings is 89.14 (6)°. The oxazolidine ring mean plane makes dihedral angles of 81.69 (6)° with benzene ring (C1-C6) and 68.92 (6)° with benzene ring (C9-C14).

The molecule features bifurcated intramolecular C–H···O hydrogen bonds (Table 1).

In the crystal, molecules are linked via C-H···π interactions forming chains along direction [100]; see Table 1.

Related literature top

For the biological activity of thiazole derivatives, see: Guo et al. (2006); Karegoudar et al. (2008); Reddy et al. (1999).

Experimental top

A mixture of 2,2'-(butane-1,4-diylbis(oxy))dibenzaldehyde (1 mMol) and thiazolidine-4-carboxylic acid (1 mMol) was refluxed in acetonitrile (30 ml) for about 6 hrs under N2 atm. After the completion of reaction as indicated by TLC, acetonitrile was evaporated under reduced pressure. The crude product was purified by column chromatography using hexane: EtOAc (8:2) mixture as eluent. Block-like colourless crystals of the title compound, suitable for X-ray diffraction, were obtained by slow evaporation of a solution in ethyl acetate at room temperature.

Refinement top

The H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 - 0.98 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
8,13,26-Trioxa-23-thia-21-azapentacyclo[18.6.0.02,7.014,19.021,25]hexacosa-2(7),3,5,14,16,18-hexaene top
Crystal data top
C21H23NO3SF(000) = 784
Mr = 369.46Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7768 reflections
a = 9.9858 (5) Åθ = 2.1–34.8°
b = 17.8830 (8) ŵ = 0.20 mm1
c = 10.2054 (4) ÅT = 293 K
β = 94.663 (2)°Block, colourless
V = 1816.41 (14) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
7768 independent reflections
Radiation source: fine-focus sealed tube5150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scansθmax = 34.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1315
Tmin = 0.943, Tmax = 0.961k = 2828
29183 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0779P)2 + 0.2141P]
where P = (Fo2 + 2Fc2)/3
7768 reflections(Δ/σ)max = 0.002
235 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C21H23NO3SV = 1816.41 (14) Å3
Mr = 369.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9858 (5) ŵ = 0.20 mm1
b = 17.8830 (8) ÅT = 293 K
c = 10.2054 (4) Å0.30 × 0.25 × 0.20 mm
β = 94.663 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
7768 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5150 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.961Rint = 0.034
29183 measured reflectionsθmax = 34.8°
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.152Δρmax = 0.38 e Å3
S = 1.02Δρmin = 0.23 e Å3
7768 reflectionsAbsolute structure: ?
235 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74184 (4)1.12013 (2)0.65807 (4)0.0494 (1)
O10.57658 (8)0.80765 (4)0.59355 (7)0.0381 (2)
O20.78980 (10)0.74731 (5)0.76920 (9)0.0485 (3)
O30.89870 (8)0.94723 (5)0.64326 (9)0.0436 (3)
N10.67629 (9)0.98089 (5)0.59254 (9)0.0340 (2)
C10.50176 (11)0.84125 (6)0.68238 (10)0.0325 (3)
C20.37387 (12)0.81698 (7)0.70780 (13)0.0429 (3)
C30.30109 (13)0.85474 (8)0.79647 (15)0.0506 (4)
C40.35388 (13)0.91678 (8)0.86141 (14)0.0500 (4)
C50.48200 (12)0.94056 (7)0.83674 (12)0.0398 (3)
C60.55823 (10)0.90457 (6)0.74765 (10)0.0305 (2)
C70.68950 (10)0.94036 (5)0.71960 (9)0.0289 (2)
C80.81406 (10)0.89322 (6)0.70168 (10)0.0322 (3)
C90.88694 (10)0.86250 (6)0.82490 (11)0.0337 (3)
C100.96886 (12)0.90696 (7)0.90900 (12)0.0431 (3)
C111.03721 (13)0.87723 (9)1.02151 (14)0.0512 (4)
C121.02422 (13)0.80285 (9)1.04927 (13)0.0512 (4)
C130.94301 (13)0.75665 (8)0.96711 (13)0.0465 (4)
C140.87363 (11)0.78676 (6)0.85559 (11)0.0372 (3)
C150.77313 (15)0.66932 (7)0.78900 (14)0.0506 (4)
C160.69047 (16)0.63866 (7)0.67137 (15)0.0525 (4)
C170.54971 (14)0.67230 (7)0.64497 (14)0.0476 (4)
C180.53496 (15)0.73498 (7)0.54430 (12)0.0475 (4)
C190.81413 (12)0.99003 (6)0.55430 (11)0.0385 (3)
C200.85491 (15)1.07215 (8)0.55857 (18)0.0572 (5)
C210.61277 (12)1.05348 (6)0.59768 (13)0.0427 (3)
H20.337100.775000.664700.0510*
H30.215700.838000.812400.0610*
H40.304800.942400.920700.0600*
H50.518100.982100.881600.0480*
H70.713000.977000.789200.0350*
H80.791500.852500.639500.0390*
H100.978300.957400.890000.0520*
H111.091300.907701.077400.0610*
H121.070300.782901.124100.0610*
H130.935100.706100.986500.0560*
H15A0.727900.660600.868200.0610*
H15B0.860000.644800.798600.0610*
H16A0.681400.585100.682800.0630*
H16B0.739400.646600.594200.0630*
H17A0.488400.632400.616000.0570*
H17B0.521300.691100.727500.0570*
H18A0.587400.722400.471400.0570*
H18B0.441500.737900.510300.0570*
H190.819500.970700.465000.0460*
H20A0.848801.092900.470500.0690*
H20B0.946701.077400.596400.0690*
H21A0.541001.052000.656300.0510*
H21B0.574901.068000.510900.0510*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0521 (2)0.0315 (2)0.0628 (2)0.0031 (1)0.0075 (2)0.0057 (1)
O10.0453 (4)0.0319 (4)0.0373 (4)0.0076 (3)0.0047 (3)0.0043 (3)
O20.0605 (6)0.0298 (4)0.0528 (5)0.0035 (3)0.0103 (4)0.0067 (3)
O30.0342 (4)0.0459 (5)0.0514 (5)0.0017 (3)0.0071 (3)0.0131 (4)
N10.0372 (4)0.0292 (4)0.0343 (4)0.0051 (3)0.0041 (3)0.0056 (3)
C10.0343 (5)0.0290 (4)0.0336 (5)0.0023 (4)0.0007 (4)0.0051 (4)
C20.0359 (5)0.0394 (6)0.0527 (7)0.0063 (4)0.0007 (5)0.0065 (5)
C30.0338 (6)0.0527 (7)0.0663 (8)0.0000 (5)0.0097 (5)0.0116 (6)
C40.0426 (6)0.0506 (7)0.0590 (8)0.0076 (5)0.0172 (5)0.0041 (6)
C50.0399 (5)0.0364 (5)0.0435 (6)0.0037 (4)0.0058 (4)0.0010 (4)
C60.0309 (4)0.0277 (4)0.0323 (4)0.0010 (3)0.0006 (3)0.0042 (3)
C70.0315 (4)0.0247 (4)0.0299 (4)0.0011 (3)0.0016 (3)0.0012 (3)
C80.0319 (4)0.0299 (4)0.0347 (5)0.0002 (3)0.0031 (3)0.0018 (4)
C90.0298 (4)0.0331 (5)0.0380 (5)0.0053 (4)0.0017 (4)0.0011 (4)
C100.0387 (6)0.0412 (6)0.0479 (6)0.0014 (4)0.0049 (4)0.0024 (5)
C110.0407 (6)0.0623 (9)0.0484 (7)0.0022 (5)0.0094 (5)0.0050 (6)
C120.0423 (6)0.0658 (9)0.0443 (6)0.0132 (6)0.0043 (5)0.0077 (6)
C130.0456 (6)0.0459 (7)0.0477 (6)0.0105 (5)0.0015 (5)0.0108 (5)
C140.0360 (5)0.0349 (5)0.0405 (5)0.0060 (4)0.0016 (4)0.0024 (4)
C150.0603 (8)0.0290 (5)0.0624 (8)0.0007 (5)0.0048 (6)0.0076 (5)
C160.0625 (8)0.0299 (5)0.0666 (9)0.0033 (5)0.0146 (6)0.0068 (5)
C170.0575 (7)0.0320 (5)0.0539 (7)0.0119 (5)0.0087 (6)0.0045 (5)
C180.0639 (8)0.0369 (6)0.0414 (6)0.0127 (5)0.0025 (5)0.0084 (5)
C190.0454 (6)0.0340 (5)0.0367 (5)0.0031 (4)0.0075 (4)0.0031 (4)
C200.0490 (7)0.0384 (6)0.0860 (11)0.0081 (5)0.0170 (7)0.0104 (7)
C210.0378 (5)0.0338 (5)0.0543 (7)0.0020 (4)0.0087 (5)0.0119 (5)
Geometric parameters (Å, º) top
S1—C201.7968 (16)C16—C171.533 (2)
S1—C211.8255 (12)C17—C181.5196 (18)
O1—C11.3606 (13)C19—C201.5236 (18)
O1—C181.4423 (15)C2—H20.9300
O2—C141.3623 (14)C3—H30.9300
O2—C151.4210 (15)C4—H40.9300
O3—C81.4438 (14)C5—H50.9300
O3—C191.4137 (14)C7—H70.9800
N1—C71.4820 (13)C8—H80.9800
N1—C191.4700 (15)C10—H100.9300
N1—C211.4476 (14)C11—H110.9300
C1—C21.3930 (16)C12—H120.9300
C1—C61.4081 (15)C13—H130.9300
C2—C31.3820 (19)C15—H15A0.9700
C3—C41.375 (2)C15—H15B0.9700
C4—C51.3905 (18)C16—H16A0.9700
C5—C61.3903 (16)C16—H16B0.9700
C6—C71.5070 (14)C17—H17A0.9700
C7—C81.5259 (14)C17—H17B0.9700
C8—C91.5047 (15)C18—H18A0.9700
C9—C101.3870 (16)C18—H18B0.9700
C9—C141.3990 (15)C19—H190.9800
C10—C111.3927 (19)C20—H20A0.9700
C11—C121.368 (2)C20—H20B0.9700
C12—C131.390 (2)C21—H21A0.9700
C13—C141.3918 (17)C21—H21B0.9700
C15—C161.504 (2)
C20—S1—C2187.50 (6)C6—C5—H5119.00
C1—O1—C18118.15 (9)N1—C7—H7108.00
C14—O2—C15119.29 (10)C6—C7—H7108.00
C8—O3—C19106.75 (8)C8—C7—H7108.00
C7—N1—C19105.55 (8)O3—C8—H8110.00
C7—N1—C21114.52 (9)C7—C8—H8110.00
C19—N1—C21109.41 (9)C9—C8—H8110.00
O1—C1—C2123.22 (10)C9—C10—H10119.00
O1—C1—C6116.73 (9)C11—C10—H10119.00
C2—C1—C6120.03 (10)C10—C11—H11120.00
C1—C2—C3120.57 (12)C12—C11—H11120.00
C2—C3—C4120.55 (12)C11—C12—H12120.00
C3—C4—C5118.80 (12)C13—C12—H12120.00
C4—C5—C6122.52 (12)C12—C13—H13120.00
C1—C6—C5117.53 (10)C14—C13—H13120.00
C1—C6—C7124.94 (9)O2—C15—H15A110.00
C5—C6—C7117.30 (9)O2—C15—H15B110.00
N1—C7—C6110.92 (8)C16—C15—H15A110.00
N1—C7—C8100.42 (8)C16—C15—H15B110.00
C6—C7—C8121.22 (8)H15A—C15—H15B108.00
O3—C8—C7100.96 (8)C15—C16—H16A108.00
O3—C8—C9109.25 (8)C15—C16—H16B108.00
C7—C8—C9116.43 (8)C17—C16—H16A108.00
C8—C9—C10121.92 (10)C17—C16—H16B108.00
C8—C9—C14119.49 (10)H16A—C16—H16B107.00
C10—C9—C14118.58 (10)C16—C17—H17A108.00
C9—C10—C11121.08 (12)C16—C17—H17B108.00
C10—C11—C12119.57 (13)C18—C17—H17A108.00
C11—C12—C13120.88 (13)C18—C17—H17B108.00
C12—C13—C14119.37 (13)H17A—C17—H17B107.00
O2—C14—C9114.90 (10)O1—C18—H18A109.00
O2—C14—C13124.59 (11)O1—C18—H18B109.00
C9—C14—C13120.51 (11)C17—C18—H18A109.00
O2—C15—C16107.90 (11)C17—C18—H18B109.00
C15—C16—C17115.67 (12)H18A—C18—H18B108.00
C16—C17—C18116.46 (12)O3—C19—H19109.00
O1—C18—C17114.82 (10)N1—C19—H19109.00
O3—C19—N1107.02 (9)C20—C19—H19109.00
O3—C19—C20111.05 (10)S1—C20—H20A110.00
N1—C19—C20110.70 (10)S1—C20—H20B110.00
S1—C20—C19107.32 (10)C19—C20—H20A110.00
S1—C21—N1107.36 (8)C19—C20—H20B110.00
C1—C2—H2120.00H20A—C20—H20B109.00
C3—C2—H2120.00S1—C21—H21A110.00
C2—C3—H3120.00S1—C21—H21B110.00
C4—C3—H3120.00N1—C21—H21A110.00
C3—C4—H4121.00N1—C21—H21B110.00
C5—C4—H4121.00H21A—C21—H21B109.00
C4—C5—H5119.00
C21—S1—C20—C1932.36 (10)C4—C5—C6—C7173.95 (11)
C20—S1—C21—N139.77 (9)C4—C5—C6—C10.75 (17)
C18—O1—C1—C213.60 (15)C5—C6—C7—C8141.10 (10)
C18—O1—C1—C6167.96 (10)C5—C6—C7—N1101.65 (11)
C1—O1—C18—C1768.41 (14)C1—C6—C7—C844.64 (14)
C14—O2—C15—C16172.86 (11)C1—C6—C7—N172.61 (12)
C15—O2—C14—C9177.78 (11)N1—C7—C8—C9160.85 (9)
C15—O2—C14—C132.20 (18)C6—C7—C8—O3165.12 (8)
C8—O3—C19—C20140.90 (10)C6—C7—C8—C976.76 (12)
C8—O3—C19—N119.98 (11)N1—C7—C8—O342.72 (9)
C19—O3—C8—C9162.56 (9)C7—C8—C9—C1076.25 (13)
C19—O3—C8—C739.33 (10)O3—C8—C9—C14141.97 (10)
C21—N1—C19—C2011.04 (14)C7—C8—C9—C14104.54 (11)
C19—N1—C7—C6160.77 (8)O3—C8—C9—C1037.25 (14)
C7—N1—C19—C20112.65 (11)C8—C9—C14—C13178.22 (10)
C19—N1—C21—S135.51 (11)C8—C9—C10—C11178.96 (11)
C21—N1—C7—C8151.80 (9)C8—C9—C14—O21.76 (15)
C21—N1—C19—O3132.18 (9)C14—C9—C10—C110.26 (17)
C19—N1—C7—C831.39 (9)C10—C9—C14—C131.02 (17)
C7—N1—C19—O38.49 (10)C10—C9—C14—O2179.01 (10)
C21—N1—C7—C678.83 (11)C9—C10—C11—C120.45 (19)
C7—N1—C21—S182.72 (10)C10—C11—C12—C130.4 (2)
C2—C1—C6—C7174.06 (10)C11—C12—C13—C140.3 (2)
C2—C1—C6—C50.19 (16)C12—C13—C14—O2178.97 (12)
C6—C1—C2—C30.27 (18)C12—C13—C14—C91.06 (18)
O1—C1—C6—C5178.68 (10)O2—C15—C16—C1760.14 (15)
O1—C1—C2—C3178.11 (11)C15—C16—C17—C1896.72 (15)
O1—C1—C6—C74.43 (15)C16—C17—C18—O180.88 (15)
C1—C2—C3—C40.2 (2)O3—C19—C20—S1100.26 (11)
C2—C3—C4—C50.3 (2)N1—C19—C20—S118.46 (13)
C3—C4—C5—C60.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.982.302.9593 (13)123
C8—H8···O20.982.302.7146 (14)104
C3—H3···Cg1i0.932.993.8672 (14)158
C16—H16B···Cg1ii0.972.813.7400 (17)160
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.982.302.9593 (13)123
C8—H8···O20.982.302.7146 (14)104
C3—H3···Cg1i0.932.993.8672 (14)158
C16—H16B···Cg1ii0.972.813.7400 (17)160
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z1/2.
Acknowledgements top

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India for data collection. SK, TS and DV the UGC (SAP–CAS) for the departmental facilities. SK thanks the DST PURSE for a Junior Research Fellowship and TS thanks the DST Inspire for a fellowship.

references
References top

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Guo, C. B., Guo, Y. S., Guo, Z. R., Xiao, J. F., Chu, F. M. & Cheng, G. F. (2006). Acta Chim. Sin. 64, 1559–1564.

Karegoudar, P., Karthikeyan, M. S., Prasad, D. J., Mahalinga, M., Holla, B. S. & Kumari, N. S. (2008). Eur. J. Med. Chem. 43, 261–267.

Reddy, K. A., Lohray, B. B., Bhushan, V., Bajji, A. C., Reddy, K. V., Reddy, P. R., Krishna, T. H., Rao, I. N. & Jajoo, H. K. (1999). J. Med. Chem. 42, 1927–1940.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D 65, 148–155.