metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[Hexane-2,5-dione bis(thiosemicarbazonato)]nickel(II)

Mohammad Safi Shalamzari,^a Atash V. Gurbanov,^b* Seykens Heidic,^c Reza Kia^{d,e} and Shabnam Behrouzi^a

^aDepartment of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium, ^bDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, ^cDepartment of Chemistry, University of Antwerp, Antwerp, Belgium, ^dDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and ^eDeutsches Elektronen-Synchrotron (DESY), Division Structural Dynamics of (Bio)chemical Systems, Notkestrasse 85, 22607 Hamburg, Germany Correspondence e-mail: organik10@hotmail.com

Received 5 May 2013; accepted 9 May 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.021; wR factor = 0.059; data-to-parameter ratio = 19.7.

In the title compound, $[Ni(C_8H_{14}N_6S_2)]$, the Ni^{II} ion is coordinated by N₂S₂ donor atoms of the tetradentate thiosemicarbazone ligand, and has a slightly distorted square-planar geometry. In the crystal, inversion-related molecules are linked *via* pairs of N-H···N and N-H···S hydrogen bonds, forming $R_2^2(8)$ ring motifs. Molecules are further linked by slightly weaker N-H···N, N-H···S and C-H···S hydrogen bonds, forming two-dimensional networks which lie parallel to the *bc* plane.

Related literature

For standard values of bond lengths, see: Allen *et al.* (1987). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For related structures, see: Cowley *et al.* (2004); Lobana *et al.* (2011). The antitumor and antibacterial activity of thiosemicarbazones and thiosemicarbazides has been attributed to their ability to chelate trace metals, see: Kirschner *et al.* (1966). For the preparation of hexan-2,5-dionebis(thiosemicarbazone), see: Nandi *et al.* (1984).

 $M_r = 317.08$

Experimental

Crystal data [Ni(C₈H₁₄N₆S₂)] Triclinic, $P\overline{1}$ a = 7.8928 (3) Å b = 8.0378 (3) Å c = 11.0889 (4) Å $\alpha = 69.720$ (1)° $\beta = 75.214$ (1)° $\gamma = 85.693$ (1)°

Data collection

Bruker APEXII CCD	7275 measured reflections
diffractometer	3078 independent reflections
Absorption correction: multi-scan	2833 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.011$
$T_{\min} = 0.711, \ T_{\max} = 0.711$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.021$	156 parameters
$wR(F^2) = 0.059$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
3078 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H2N3\cdots N2^{i}$	0.90	2.16	3.054 (2)	173
$N3-H1N3\cdots S1^{ii}$	0.90	2.58	3.4699 (17)	171
$N6-H1N6\cdots N2^{iii}$	0.90	2.28	3.1248 (19)	156
$N6-H2N6\cdots S2^{iv}$	0.92	2.67	3.5552 (16)	162
$C3 - H3B \cdots S2^{v}$	0.96	2.87	3.7513 (17)	152

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 1, -y + 1, -z + 2; (iv) -x + 1, -y + 2, -z + 2; (v) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2005); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank the Chemistry Department of BSU for providing the X-ray diffraction facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2598).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Gee, A. D. & Heslop, J. M. (2004). *Dalton Trans.* pp. 2404–2412.
- Kirschner, S., Weu, Y. K., Francis, D. & Bergman, J. G. (1966). *J. Med. Chem.* 9, 369–375.
- Lobana, T. S., Kumari, P., Sharma, R., Castineiras, A., Butcher, R. J., Akitsu, T. & Aritake, Y. (2011). *Dalton Trans.* pp. 3219–3228.
- Nandi, A. K., Chaudhuri, S. & Mazumdar, S. K. (1984). *Inorg. Chim. Acta*, **92**, 235–240.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Cross

V = 637.96 (4) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.20$ mm

 $\mu = 1.84 \text{ mm}^{-1}$

T = 296 K

7 - 2

supporting information

Acta Cryst. (2013). E69, m322 [doi:10.1107/S1600536813012816]

[Hexane-2,5-dione bis(thiosemicarbazonato)]nickel(II)

Mohammad Safi Shalamzari, Atash V. Gurbanov, Seykens Heidic, Reza Kia and Shabnam Behrouzi

S1. Comment

The antitumor and antibacterial of thiosemicarbazones and thiosemicarbazides have been attributed to their ability to chelate trace metals (Kirschner *et al.* 1966). Thiosemicarbazonato complexes are usually synthesized by the conventional approach of simply mixing alcoholic solutions of thiosemicarbazones and stoichiometric amounts of transition metal salt.

The asymmetric unit of the title compound, Fig. 1, comprises a thiosemicarbazone nickel(II) complex in which the Ni^{II} ion is coordinated by N_2S_2 donor atoms with a slightly distorted square-planar geometry. The angle between the mean planes S1–Ni1–N1 and S2–Ni1–N4 is 7.90 (4)°. The mean deviation of atom Ni1 from the mean plane N1–S1–S2–N4 is 0.0861 (5) Å. The bond lengths (Allen *et al.*, 1987) and angles are within the normal ranges and are comparable to those reported for related structures (Cowley *et al.* (2004); Lobana *et al.* (2011).

Pairs of intermolecular N—H···N and N—H···S hydrogen bonds make $R^2_2(8)$ ring motifs (Bernstein *et al.*, 1995) [Table 1].

In the crystal, molecules are linked by N—H…N, N—H…S, and C—H…S interactions forming two-dimensional networks which lie parallel to the *bc* plane (Table 1 and Fig. 2).

S2. Experimental

Hexan-2,5-dionebis(thiosemicarbazone) was prepared by a method similar to that described by (Nandi *et al.* 1984). Hexan-2,5-dionebis(thiosemicarbazone) (1 mmol, 0.260 g) and nickel(II) acetate (0.66 g, 2.66 mmol) were placed in the main arm of a branched tube. Methanol was carefully added to fill the arms. The tube was sealed and immersed in an oil bath at 333 K while the branched arm was kept at ambient temperature. After 5 days, dark-red crystals (M.p. = 468 K) were isolated in the cooler arm and filtered off, washed with acetone and ether and dried in air (0.192 g; Yield 74%).

S3. Refinement

The N-bound H atoms were located in a difference Fourier map and constrained to refine on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(N)$. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH₃ and CH₂ H-atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(C)$, where k = 1.5 for CH₃ H-atoms, and = 1.2 for other H atoms.

Figure 1

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view along the *b*-axis of the crystal packing of the title compound, showing the two-dimensional networks lying parallel to the *bc* plane. Only the H atoms involved in hydrogen bonding are shown.

[Hexane-2,5-dione bis(thiosemicarbazonato)]nickel(II)

Z = 2
F(000) = 328
$D_{\rm x} = 1.651 {\rm Mg} {\rm m}^{-3}$
Melting point < 468 K
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 4799 reflections
$\theta = 2.7 - 28.3^{\circ}$
$\mu = 1.84 \text{ mm}^{-1}$
T = 296 K
Prism, dark-red
$0.20 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Bruker APEXII CCD	7275 measured reflections
diffractometer	3078 independent reflections
Radiation source: fine-focus sealed tube	2833 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.011$
φ and ω scans	$\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Bruker, 2005)	$k = -10 \rightarrow 10$
$T_{\min} = 0.711, T_{\max} = 0.711$	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.021$	Hydrogen site location: inferred from
$wR(F^2) = 0.059$	neighbouring sites
S = 0.99	H-atom parameters constrained
3078 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0381P)^2 + 0.1248P]$
156 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.74078 (2)	0.65209 (2)	0.792634 (16)	0.02818 (7)	
S1	0.67960 (5)	0.84581 (4)	0.61696 (4)	0.03729 (9)	
S2	0.69288 (5)	0.85168 (4)	0.88575 (4)	0.03624 (9)	
N1	0.77048 (15)	0.49799 (14)	0.69038 (11)	0.0297 (2)	
N2	0.65361 (17)	0.51991 (15)	0.60798 (12)	0.0336 (2)	
N3	0.5029 (2)	0.73756 (19)	0.48368 (16)	0.0567 (4)	
H1N3	0.4658	0.8503	0.4602	0.068*	
H2N3	0.4647	0.6561	0.4575	0.068*	
N4	0.75863 (15)	0.48253 (15)	0.96705 (12)	0.0314 (2)	
N5	0.66994 (18)	0.53312 (16)	1.07736 (12)	0.0381 (3)	
N6	0.57514 (19)	0.76724 (18)	1.14636 (13)	0.0432 (3)	
H1N6	0.5353	0.6876	1.2274	0.052*	
H2N6	0.5298	0.8801	1.1246	0.052*	
C1	0.6069 (2)	0.68543 (18)	0.56807 (14)	0.0350 (3)	
C2	0.64152 (18)	0.70094 (18)	1.04654 (14)	0.0321 (3)	
C3	0.8992 (2)	0.2587 (2)	0.60870 (16)	0.0427 (3)	

H3A	0.8689	0.3227	0.5264	0.064*
H3B	0.8197	0.1599	0.6581	0.064*
H3C	1.0167	0.2163	0.5910	0.064*
C4	0.88697 (18)	0.37854 (18)	0.68727 (14)	0.0321 (3)
C5	1.01427 (19)	0.3582 (2)	0.77028 (16)	0.0389 (3)
H5A	1.0445	0.4742	0.7680	0.047*
H5B	1.1207	0.3055	0.7337	0.047*
C6	0.9390 (2)	0.24249 (19)	0.91302 (16)	0.0376 (3)
H6A	0.8753	0.1449	0.9115	0.045*
H6B	1.0366	0.1917	0.9514	0.045*
C7	0.82010 (18)	0.32434 (18)	1.00507 (15)	0.0336 (3)
C8	0.7864 (2)	0.2088 (2)	1.14834 (17)	0.0457 (4)
H8A	0.6655	0.2164	1.1913	0.069*
H8B	0.8593	0.2480	1.1909	0.069*
H8C	0.8131	0.0881	1.1543	0.069*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ni1	0.03387 (10)	0.02086 (9)	0.03506 (10)	0.00579 (6)	-0.01551 (7)	-0.01199 (7)
S 1	0.0556 (2)	0.02174 (16)	0.04102 (19)	0.00748 (14)	-0.02323 (16)	-0.01184 (14)
S2	0.0531 (2)	0.02249 (16)	0.03655 (18)	0.00501 (14)	-0.01499 (15)	-0.01232 (13)
N1	0.0350 (6)	0.0238 (5)	0.0344 (6)	0.0044 (4)	-0.0139 (4)	-0.0118 (4)
N2	0.0452 (6)	0.0261 (5)	0.0369 (6)	0.0078 (5)	-0.0209 (5)	-0.0136 (5)
N3	0.0945 (12)	0.0322 (7)	0.0674 (9)	0.0223 (7)	-0.0587 (9)	-0.0231 (7)
N4	0.0343 (6)	0.0259 (5)	0.0382 (6)	0.0036 (4)	-0.0154 (5)	-0.0119 (5)
N5	0.0465 (7)	0.0305 (6)	0.0376 (6)	0.0068 (5)	-0.0131 (5)	-0.0111 (5)
N6	0.0557 (8)	0.0364 (7)	0.0375 (7)	0.0089 (6)	-0.0092 (6)	-0.0156 (5)
C1	0.0487 (8)	0.0267 (6)	0.0352 (7)	0.0080 (6)	-0.0181 (6)	-0.0132 (5)
C2	0.0335 (6)	0.0296 (6)	0.0371 (7)	0.0023 (5)	-0.0138 (5)	-0.0129 (5)
C3	0.0498 (9)	0.0348 (7)	0.0471 (8)	0.0102 (6)	-0.0098 (7)	-0.0219 (7)
C4	0.0337 (6)	0.0249 (6)	0.0372 (7)	0.0026 (5)	-0.0084 (5)	-0.0106 (5)
C5	0.0307 (6)	0.0355 (7)	0.0549 (9)	0.0079 (5)	-0.0151 (6)	-0.0190 (7)
C6	0.0402 (7)	0.0279 (7)	0.0519 (8)	0.0116 (6)	-0.0239 (6)	-0.0158 (6)
C7	0.0341 (6)	0.0259 (6)	0.0448 (7)	0.0034 (5)	-0.0200 (6)	-0.0105 (6)
C8	0.0503 (9)	0.0325 (7)	0.0487 (9)	0.0077 (6)	-0.0185 (7)	-0.0038 (6)

Geometric parameters (Å, °)

Nil—N1	1.9155 (11)	N6—H2N6	0.9237
Nil—N4	1.9751 (12)	C3—C4	1.490 (2)
Ni1—S2	2.1542 (4)	С3—НЗА	0.9600
Ni1—S1	2.1718 (4)	С3—Н3В	0.9600
S1—C1	1.7434 (14)	С3—НЗС	0.9600
S2—C2	1.7374 (15)	C4—C5	1.4922 (19)
N1—C4	1.2816 (18)	C5—C6	1.518 (2)
N1—N2	1.4181 (15)	C5—H5A	0.9700
N2—C1	1.3051 (17)	С5—Н5В	0.9700

N3—C1	1.3392 (19)	С6—С7	1.496 (2)
N3—H1N3	0.9003	С6—Н6А	0.9700
N3—H2N3	0.9003	С6—Н6В	0.9700
N4—C7	1.2923 (17)	C7—C8	1.502 (2)
N4—N5	1.4202 (17)	C8—H8A	0.9600
N5—C2	1.2887 (18)	C8—H8B	0.9600
N6—C2	1.3619 (18)	C8—H8C	0.9600
N6—H1N6	0.8959		
N1—Ni1—N4	101.11 (5)	С4—С3—Н3В	109.5
N1—Ni1—S2	171.94 (3)	НЗА—СЗ—НЗВ	109.5
N4—Ni1—S2	86.61 (3)	C4—C3—H3C	109.5
N1—Ni1—S1	83.28 (3)	НЗА—СЗ—НЗС	109.5
N4—Ni1—S1	170.95 (4)	НЗВ—СЗ—НЗС	109.5
\$2—Ni1—\$1	88.755 (14)	N1—C4—C5	117.00 (12)
C1—S1—Ni1	93.57 (5)	N1—C4—C3	123.93 (13)
C2— $S2$ —Nil	94.83 (5)	C5-C4-C3	119.06 (13)
C4—N1—N2	116.52 (11)	C4—C5—C6	111.47 (12)
C4—N1—Ni1	126 65 (10)	C4—C5—H5A	109 3
N2—N1—Ni1	116.82 (8)	C6-C5-H5A	109.3
C1 - N2 - N1	109.69(11)	C4-C5-H5B	109.3
C1 - N3 - H1N3	119.4	C6-C5-H5B	109.3
C1 - N3 - H2N3	118.7	H5A_C5_H5B	109.5
H1N3_N3_H2N3	121.7	C7-C6-C5	118 83 (12)
C7N4N5	111 17 (12)	C7 - C6 - H6A	107.6
C7—N4—Ni1	133 49 (10)	C_{5} C_{6} H_{6A}	107.6
N5—N4—Nil	114 93 (8)	C7—C6—H6B	107.6
C_2 _N5_N4	114.95(0) 113.32(12)	C5-C6-H6B	107.6
C_2 NG H1N6	116.4	Н6АС6Н6В	107.0
$C_2 = N_0 = H_1 N_0$	117.0	M C7 C8	107.0 122 59 (14)
H1N6 N6 H2N6	120.2	N4 C7 C6	122.37(14) 123.82(13)
N2N3	119 68 (13)	C_{8} C_{7} C_{6}	123.82(13) 113 50(12)
$N_2 = C_1 = N_3$	117.00(13) 122.47(11)	C_{7} C_{8} H_{8A}	109.5
$N_2 = C_1 = S_1$	122.47(11) 117.82(11)	$C_7 = C_8 = H_8 P$	109.5
N5 C2 N6	117.02(11) 118.33(12)		109.5
$N_5 = C_2 = N_0$	110.33(13) 124.24(11)	$H_{0} = H_{0} = H_{0}$	109.5
$N_{5} = C_{2} = S_{2}$	124.34(11) 117.25(11)		109.5
$10 - C_2 - S_2$	117.23 (11)	$H^{0}A - C^{0} - H^{0}C$	109.5
С4—С3—ПЗА	109.3	пов—Со—пос	109.3
N1—Ni1—S1—C1	26 73 (7)	Ni1—S1—C1—N3	159 93 (14)
$s_2 = Ni1 = s_1 = C_1$	-152.05(6)	N4 - N5 - C2 - N6	-17275(12)
$N_4 = N_1 = S_2 = C_2$	-17.03(6)	N4 N5 C2 S2	3 74 (18)
S1 - Ni1 - S2 - C2	155 19 (5)	Ni1 $-$ S2 $-$ C2 $-$ N5	12.62(13)
N4-Ni1-N1-C4	-46.03(13)	$Ni1 - S^2 - C^2 - N6$	-170.86(11)
S1—Ni1—N1—C4	141.98 (12)	N_{2} N_{1} C_{4} C_{5}	178 11 (12)
N4_Ni1_N1_N2	135.05 (9)	Ni1-N1-C4-C5	-0.80(10)
S1_Ni1_N1_N2	-36.94(9)	$N_2 - N_1 - C_4 - C_3$	-32(2)
C4 - N1 - N2 - C1	-14840(13)	$N_{1} N_{1} C_{4} C_{3}$	177 87 (11)
0. 111 112 01			· / / · · · · · · · · · · · · · · · · ·

supporting information

Ni1—N1—N2—C1	30.63 (15)	N1-C4-C5-C6	83.18 (16)
N1—Ni1—N4—C7	18.12 (14)	C3—C4—C5—C6	-95.57 (16)
S2—Ni1—N4—C7	-164.20 (13)	C4—C5—C6—C7	-82.08 (16)
N1—Ni1—N4—N5	-153.75 (9)	N5—N4—C7—C8	4.41 (19)
S2—Ni1—N4—N5	23.93 (9)	Ni1—N4—C7—C8	-167.68 (11)
C7—N4—N5—C2	165.09 (13)	N5—N4—C7—C6	-171.94 (13)
Ni1—N4—N5—C2	-21.23 (15)	Ni1—N4—C7—C6	16.0 (2)
N1—N2—C1—N3	176.82 (15)	C5—C6—C7—N4	9.3 (2)
N1—N2—C1—S1	-1.41 (18)	C5—C6—C7—C8	-167.36 (13)
Ni1—S1—C1—N2	-21.81 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H…A
N3—H2 <i>N</i> 3····N2 ⁱ	0.90	2.16	3.054 (2)	173
N3—H1 <i>N</i> 3····S1 ⁱⁱ	0.90	2.58	3.4699 (17)	171
N6—H1 <i>N</i> 6····N2 ⁱⁱⁱ	0.90	2.28	3.1248 (19)	156
N6—H2N6···S2 ^{iv}	0.92	2.67	3.5552 (16)	162
C3— $H3B$ ···S2 ^v	0.96	2.87	3.7513 (17)	152

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+2; (iv) -x+1, -y+2, -z+2; (v) x, y-1, z.