[Journal logo]

Volume 69 
Part 6 
Page m322  
June 2013  

Received 5 May 2013
Accepted 9 May 2013
Online 15 May 2013

Key indicators
Single-crystal X-ray study
T = 296 K
Mean [sigma](C-C) = 0.002 Å
R = 0.021
wR = 0.059
Data-to-parameter ratio = 19.7
Details
Open access

[Hexane-2,5-dione bis(thiosemicarbazonato)]nickel(II)

aDepartment of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium,bDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan,cDepartment of Chemistry, University of Antwerp, Antwerp, Belgium,dDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and eDeutsches Elektronen-Synchrotron (DESY), Division Structural Dynamics of (Bio)chemical Systems, Notkestrasse 85, 22607 Hamburg, Germany
Correspondence e-mail: organik10@hotmail.com

In the title compound, [Ni(C8H14N6S2)], the NiII ion is coordinated by N2S2 donor atoms of the tetradentate thiosemicarbazone ligand, and has a slightly distorted square-planar geometry. In the crystal, inversion-related molecules are linked via pairs of N-H...N and N-H...S hydrogen bonds, forming R22(8) ring motifs. Molecules are further linked by slightly weaker N-H...N, N-H...S and C-H...S hydrogen bonds, forming two-dimensional networks which lie parallel to the bc plane.

Related literature

For standard values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Cowley et al. (2004[Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Gee, A. D. & Heslop, J. M. (2004). Dalton Trans. pp. 2404-2412.]); Lobana et al. (2011[Lobana, T. S., Kumari, P., Sharma, R., Castineiras, A., Butcher, R. J., Akitsu, T. & Aritake, Y. (2011). Dalton Trans. pp. 3219-3228.]). The antitumor and antibacterial activity of thiosemicarbazones and thiosemicarbazides has been attributed to their ability to chelate trace metals, see: Kirschner et al. (1966[Kirschner, S., Weu, Y. K., Francis, D. & Bergman, J. G. (1966). J. Med. Chem. 9, 369-375.]). For the preparation of hexan-2,5-dionebis(thiosemicarbazone), see: Nandi et al. (1984[Nandi, A. K., Chaudhuri, S. & Mazumdar, S. K. (1984). Inorg. Chim. Acta, 92, 235-240.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H14N6S2)]

  • Mr = 317.08

  • Triclinic, [P \overline 1]

  • a = 7.8928 (3) Å

  • b = 8.0378 (3) Å

  • c = 11.0889 (4) Å

  • [alpha] = 69.720 (1)°

  • [beta] = 75.214 (1)°

  • [gamma] = 85.693 (1)°

  • V = 637.96 (4) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 1.84 mm-1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.711, Tmax = 0.711

  • 7275 measured reflections

  • 3078 independent reflections

  • 2833 reflections with I > 2[sigma](I)

  • Rint = 0.011

Refinement
  • R[F2 > 2[sigma](F2)] = 0.021

  • wR(F2) = 0.059

  • S = 0.99

  • 3078 reflections

  • 156 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.28 e Å-3

  • [Delta][rho]min = -0.21 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N3-H2N3...N2i 0.90 2.16 3.054 (2) 173
N3-H1N3...S1ii 0.90 2.58 3.4699 (17) 171
N6-H1N6...N2iii 0.90 2.28 3.1248 (19) 156
N6-H2N6...S2iv 0.92 2.67 3.5552 (16) 162
C3-H3B...S2v 0.96 2.87 3.7513 (17) 152
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+2; (iv) -x+1, -y+2, -z+2; (v) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2598 ).


Acknowledgements

The authors thank the Chemistry Department of BSU for providing the X-ray diffraction facility.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  [CrossRef] [ChemPort] [ISI]
Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Gee, A. D. & Heslop, J. M. (2004). Dalton Trans. pp. 2404-2412.  [CSD] [CrossRef]
Kirschner, S., Weu, Y. K., Francis, D. & Bergman, J. G. (1966). J. Med. Chem. 9, 369-375.  [CrossRef] [ChemPort] [PubMed] [ISI]
Lobana, T. S., Kumari, P., Sharma, R., Castineiras, A., Butcher, R. J., Akitsu, T. & Aritake, Y. (2011). Dalton Trans. pp. 3219-3228.
Nandi, A. K., Chaudhuri, S. & Mazumdar, S. K. (1984). Inorg. Chim. Acta, 92, 235-240.  [CrossRef] [ChemPort] [ISI]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, m322  [ doi:10.1107/S1600536813012816 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.