

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-tert-Butyl-2-(2,6-dichlorophenyl)imidazo[1,2-a]pyrazin-3-amine

Zeenat Fatima,^a Thothadri Srinivasan,^a Suman Koorathota,^b Sathiah Thennarasu^b and Devadasan Velmurugan^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India Correspondence e-mail: shirai2011@gmail.com

Received 13 May 2013; accepted 17 May 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.120; data-to-parameter ratio = 16.9.

In the title compound, $C_{16}H_{16}Cl_2N_4$, the imidazole ring mean plane makes a dihedral angle of 70.01 (1)° with the phenyl ring. The Cl atoms deviate by -0.0472 (6) and 0.0245 (8) Å from the plane of their attached benzene ring. In the crystal, molecules are linked via pairs of C-H···N hydrogen bonds, forming inversion dimers.

Related literature

For applications of the pyrazine ring system in drug development, see: Du et al. (2009); Dubinina et al. (2006); Ellsworth et al. (2007); Mukaiyama et al. (2007). For background to the fluorescence properties of related compounds, see: Kawai et al. (2001); Abdullah (2005). For general background to the use of imidazole derivatives as drugs, see: Dooley et al. (1992); Jackson et al. (2000); Banfi et al. (2006). For related structures, see: Ouzidan et al. (2011); Nasir et al. (2010).

Experimental

Crystal data

$C_{16}H_{16}Cl_2N_4$	Triclinic, $P\overline{1}$
$M_r = 335.23$	a = 8.1482 (4) Å

b = 9.8553 (5) Å	
c = 11.5265 (6) Å	
$\alpha = 93.218 \ (2)^{\circ}$	
$\beta = 99.320 \ (3)^{\circ}$	
$\gamma = 113.026 \ (2)^{\circ}$	
V = 833.31 (7) Å ³	

Data collection

Bruker SMART APEXII area-	12583 measured reflections
detector diffractometer	3438 independent reflections
Absorption correction: multi-scan	2941 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2008)	$R_{\rm int} = 0.026$
$T_{\min} = 0.892, \ T_{\max} = 0.926$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	203 parameters
$wR(F^2) = 0.120$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
3438 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots N2^{i}$	0.93	2.62	3.500 (3)	158
Symmetry code: (i)	-r + 2 - n - 7			

Symmetry code: (i) -x + 2, -y, -z.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. ZF also thanks the UGC for a meritorious fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2601).

References

- Abdullah, Z. (2005). Int. J. Chem. Sci. 3, 9-15.
- Banfi, E., Scialino, G., Zampieri, D., Mamolo, M. G., Vio, L., Ferrone, M., Fermeglia, M., Paneni, M. S. & Pricl, S. (2006). J. Antimicrob. Chemother. 58. 76-84.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dooley, S. W., Jarvis, W. R., Marione, W. J. & Snider, D. E. Jr (1992). Ann. Intern. Med. 117, 257-259.
- Du, X. H., Gustin, D. J., Chen, X. Q., Duquette, J., McGee, L. R., Wang, Z. L., Ebsworth, K., Henne, K., Lemon, B., Ma, J., Miao, S. C., Sabalan, E., Sullivan, T. J., Tonn, G., Collins, T. L. & Medina, J. C. (2009). Bioorg. Med. Chem. Lett. 19, 5200-5204.
- Dubinina, G. G., Platonov, M. O., Golovach, S. M., Borysko, P. O., Tolmachov, A. O. & Volovenko, Y. M. (2006). Eur. J. Med. Chem. 41, 727-737.
- Ellsworth, B. A., Wang, Y., Zhu, Y. H., Pendri, A., Gerritz, S. W., Sun, C. Q., Carlson, K. E., Kang, L. Y., Baska, R. A., Yang, Y. F., Huang, Q., Burford, N. T., Cullen, M. J., Johnghar, S., Behnia, K., Pelleymounter, M. A., Washburn, W. N. & Ewing, W. R. (2007). Bioorg. Med. Chem. Lett. 17, 3978-3982
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Jackson, C. J., Lamb, D. C., Kelly, D. E. & Kelly, S. L. (2000). FEMS Microbiol. Lett. 192, 159-162.

Z = 2

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.20 \text{ mm}$

 $\mu = 0.39 \text{ mm}^{-1}$

T = 293 K

- Kawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc. 11, 23–32. Mukaiyama, H., Nishimura, T., Kobayashi, S., Ozawa, T., Kamada, N.,
- Komatsu, Y., Kikuchi, S., Oonota, H. & Kusama, H. (2007). *Bioorg. Med. Chem. Lett.* **15**, 868–885.
- Nasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, 02187.

Ouzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, 01684.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2013). E69, 0949-0950 [doi:10.1107/S1600536813013640]

N-tert-Butyl-2-(2,6-dichlorophenyl)imidazo[1,2-a]pyrazin-3-amine

Zeenat Fatima, Thothadri Srinivasan, Suman Koorathota, Sathiah Thennarasu and Devadasan Velmurugan

S1. Comment

The pyrazine ring system is a useful structural element in medicinal chemistry and has found broad applications in drug development such as antiproliferative agents (Dubinina *et al.*, 2006), potent CXCR3 antagonists (Du *et al.*, 2009), CB1 antagonists (Ellsworth *et al.*, 2007) and c-Src inhibitors (Mukaiyama *et al.*, 2007). On-going structural studies of heterocyclic N-containing derivatives (Nasir *et al.*, 2010) are motivated by an investigation of their fluorescence properties (Kawai *et al.*, 2001; Abdullah, 2005). For multidrug-resistant Tuberculosis (Dooley *et al.*, 1992), antifungal and antimycobacterial activity (Banfi *et al.* 2006) and bactericidal effects (Jackson *et al.* 2000), the use of imidazole based compounds were reported. In view of the different applications of this class of compounds, we have undertaken a single-crystal structure determination of the title compound.

In the titled compound, Fig.1, the imidazole ring (N2/N3/C3/C5/C6) makes a dihedral angle of 1.06 (9)° with the pyrazine ring (N1/N3/C1-C4), and a dihedral angle of 70.01 (1)° with the phenyl ring (C7-C12). The dihedral angle between the pyrazine ring and the phenyl ring is 69.54 (1)°. The chlorine atoms C11 and C12 attached to the phenyl ring deviate by -0.0472 (6)Å and 0.0245 (8)Å.

In the crystal, molecules are linked via pairs of C—H···N hydrogen bonds forming inversion dimers (Table 1 and Fig.2).

S2. Experimental

2-aminopyrazine (1.0 mmol) was placed in oven-dried round bottom flask, dissolved in EtOH (5.0 mL) and stirred at room temperature. 2,6-dichlorobenzaldehyde (1.0 mmol), tert-butyl isocyanide (1.0 mmol) and Iodine (2.0 mol%) were added together and the mixture stirred, progress of the reaction was monitored by using TLC, at room temperature for one hour. The reaction mixture was concentrated under reduced pressure and the crude product was partitioned between EtOAc and water. The organic phase was separated, and the residual product in the aqueous phase was extracted with EtOAc (2×10 mL). The combined organic extract was dried over anhydrous Na₂SO₄, filtered, concentrated and purified using column chromatography (silica gel 60-120 mesh, elutent: 5% EtOAc in hexane).M.p: 421 - 423 k, IR (KBr, cm⁻¹): 3353 (NH). After two weeks a colourless crystalline solid separated out. It was washed with a minimum amount of ethanol and then dried in a vacuum oven; a crystal was chosen for X-ray diffraction studies from this sample.

S3. Refinement

The H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93 and 0.96 Å for CH and CH₃ H atoms, respectively, with $U_{iso}(H) = 1.5U_{eq}(C)$ methyl) and = $1.2U_{eq}(C)$ for other H atoms.

Figure 1

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing of the title compound viewed along the *a* axis. The hydrogen bonds are sown as dashed lines (see Table 1 for details; H-atoms not involved in H-bonds have been excluded for clarity).

N-tert-Butyl-2-(2,6-dichlorophenyl)imidazo[1,2-a]pyrazin-3-amine

Crystal data

 $\begin{array}{l} {\rm C}_{16}{\rm H}_{16}{\rm C}{\rm I}_{2}{\rm N}_{4} \\ M_{r} = 335.23 \\ {\rm Triclinic, $P1$} \\ {\rm Hall symbol: -P 1} \\ a = 8.1482 \ (4) \ {\rm \AA} \\ b = 9.8553 \ (5) \ {\rm \AA} \\ c = 11.5265 \ (6) \ {\rm \AA} \\ a = 93.218 \ (2)^{\circ} \\ \beta = 99.320 \ (3)^{\circ} \\ \gamma = 113.026 \ (2)^{\circ} \\ V = 833.31 \ (7) \ {\rm \AA}^{3} \end{array}$

Data collection

Bruker SMART APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.892$, $T_{\max} = 0.926$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.0616P)^2 + 0.252P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
3438 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
203 parameters	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.029 (4)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 2

F(000) = 348

 $\theta = 1.8 - 26.5^{\circ}$

 $\mu = 0.39 \text{ mm}^{-1}$

Block, colourless

 $0.30 \times 0.25 \times 0.20$ mm

12583 measured reflections

 $\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$

3438 independent reflections

2941 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.026$

 $h = -10 \rightarrow 10$

 $k = -12 \rightarrow 12$

 $l = -14 \rightarrow 14$

 $D_{\rm x} = 1.336 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3438 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic or	equivalent isotropic	displacement	parameters ((A^2)
		· · · · · · · · · · · · · · · · · · ·		F	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.8515 (3)	0.3445 (2)	-0.14305 (16)	0.0590 (5)
H1	0.8278	0.3957	-0.2044	0.071*

C2	0.8018 (2)	0.3676 (2)	-0.04035 (15)	0.0490 (4)
H2	0.7462	0.4327	-0.0307	0.059*
C3	0.9215 (2)	0.19622 (19)	0.03479 (14)	0.0428 (4)
C4	0.9674 (3)	0.1803 (2)	-0.07708 (15)	0.0573 (5)
H4	1.0238	0.1165	-0.0894	0.069*
C5	0.8067 (2)	0.29067 (17)	0.16413 (13)	0.0374 (3)
C6	0.8760 (2)	0.19427 (17)	0.21161 (13)	0.0386 (3)
C7	0.8730 (2)	0.15258 (17)	0.33280 (13)	0.0412 (4)
C8	0.9765 (2)	0.25222 (19)	0.43377 (14)	0.0466 (4)
C9	0.9642 (3)	0.2172 (2)	0.54712 (16)	0.0618 (5)
H9	1.0343	0.2872	0.6126	0.074*
C10	0.8473 (4)	0.0779 (3)	0.56200 (17)	0.0737 (6)
H10	0.8378	0.0534	0.6381	0.088*
C11	0.7438 (4)	-0.0259 (2)	0.46540 (18)	0.0711 (6)
H11	0.6652	-0.1206	0.4757	0.085*
C12	0.7582 (3)	0.0125 (2)	0.35278 (16)	0.0543 (4)
C13	0.5310(2)	0.3227 (2)	0.20642 (16)	0.0529 (4)
C14	0.4269 (3)	0.2237 (5)	0.0930 (3)	0.1323 (15)
H14A	0.4406	0.2817	0.0282	0.198*
H14B	0.3004	0.1768	0.0967	0.198*
H14C	0.4727	0.1489	0.0811	0.198*
C15	0.4854 (5)	0.4564 (4)	0.2163 (4)	0.1293 (15)
H15A	0.5521	0.5183	0.2900	0.194*
H15B	0.3572	0.4243	0.2137	0.194*
H15C	0.5178	0.5118	0.1516	0.194*
C16	0.4855 (4)	0.2406 (4)	0.3101 (3)	0.1010 (10)
H16A	0.5025	0.1498	0.3006	0.151*
H16B	0.3611	0.2180	0.3144	0.151*
H16C	0.5639	0.3012	0.3817	0.151*
N1	0.9338 (2)	0.2515 (2)	-0.16355 (13)	0.0635 (4)
N2	0.9474 (2)	0.13643 (16)	0.13275 (12)	0.0466 (3)
N3	0.83689 (17)	0.29093 (14)	0.04973 (11)	0.0386 (3)
N4	0.72957 (19)	0.38082 (15)	0.20777 (13)	0.0471 (3)
H4A	0.7978	0.4719	0.2361	0.057*
C11	1.12956 (7)	0.42849 (6)	0.41790 (4)	0.0670 (2)
Cl2	0.62201 (10)	-0.11935 (6)	0.23322 (5)	0.0897 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0591 (11)	0.0737 (12)	0.0376 (9)	0.0192 (9)	0.0069 (8)	0.0206 (8)
C2	0.0468 (9)	0.0563 (10)	0.0433 (9)	0.0191 (8)	0.0079 (7)	0.0192 (7)
C3	0.0458 (8)	0.0510 (9)	0.0335 (8)	0.0213 (7)	0.0092 (6)	0.0038 (6)
C4	0.0675 (12)	0.0724 (12)	0.0367 (9)	0.0316 (10)	0.0160 (8)	0.0033 (8)
C5	0.0377 (7)	0.0415 (7)	0.0325 (7)	0.0145 (6)	0.0092 (6)	0.0062 (6)
C6	0.0440 (8)	0.0432 (8)	0.0302 (7)	0.0191 (6)	0.0081 (6)	0.0047 (6)
C7	0.0520 (9)	0.0461 (8)	0.0309 (7)	0.0244 (7)	0.0101 (6)	0.0076 (6)
C8	0.0552 (10)	0.0493 (9)	0.0363 (8)	0.0215 (8)	0.0109 (7)	0.0055 (7)

C9	0.0847 (14)	0.0649 (11)	0.0316 (8)	0.0274 (10)	0.0090 (8)	0.0024 (8)
C10	0.1114 (18)	0.0719 (13)	0.0364 (10)	0.0311 (13)	0.0228 (11)	0.0187 (9)
C11	0.1029 (17)	0.0547 (11)	0.0495 (11)	0.0206 (11)	0.0241 (11)	0.0198 (9)
C12	0.0718 (12)	0.0473 (9)	0.0394 (9)	0.0199 (8)	0.0099 (8)	0.0067 (7)
C13	0.0517 (10)	0.0700 (11)	0.0510 (10)	0.0342 (9)	0.0207 (8)	0.0183 (9)
C14	0.0456 (13)	0.225 (4)	0.092 (2)	0.0308 (19)	0.0034 (13)	-0.041(2)
C15	0.121 (3)	0.123 (3)	0.221 (4)	0.095 (2)	0.105 (3)	0.087 (3)
C16	0.0738 (16)	0.136 (2)	0.113 (2)	0.0448 (17)	0.0477 (16)	0.076 (2)
N1	0.0727 (11)	0.0839 (12)	0.0337 (8)	0.0292 (9)	0.0157 (7)	0.0109 (7)
N2	0.0590 (8)	0.0559 (8)	0.0350 (7)	0.0324 (7)	0.0130 (6)	0.0071 (6)
N3	0.0375 (6)	0.0449 (7)	0.0317 (6)	0.0144 (5)	0.0071 (5)	0.0083 (5)
N4	0.0487 (8)	0.0432 (7)	0.0548 (8)	0.0213 (6)	0.0177 (6)	0.0064 (6)
Cl1	0.0707 (3)	0.0591 (3)	0.0495 (3)	0.0047 (2)	0.0110 (2)	0.0012 (2)
Cl2	0.1200 (5)	0.0537 (3)	0.0557 (3)	-0.0004 (3)	0.0043 (3)	-0.0005 (2)

Geometric parameters (Å, °)

C1—C2	1.347 (3)	С9—Н9	0.9300
C1—N1	1.362 (3)	C10—C11	1.375 (3)
C1—H1	0.9300	C10—H10	0.9300
C2—N3	1.376 (2)	C11—C12	1.383 (3)
C2—H2	0.9300	C11—H11	0.9300
C3—N2	1.327 (2)	C12—Cl2	1.7307 (19)
C3—N3	1.378 (2)	C13—N4	1.487 (2)
C3—C4	1.417 (2)	C13—C14	1.494 (3)
C4—N1	1.304 (3)	C13—C16	1.496 (3)
C4—H4	0.9300	C13—C15	1.506 (3)
C5—C6	1.378 (2)	C14—H14A	0.9600
C5—N3	1.3800 (19)	C14—H14B	0.9600
C5—N4	1.388 (2)	C14—H14C	0.9600
C6—N2	1.3650 (19)	C15—H15A	0.9600
С6—С7	1.479 (2)	C15—H15B	0.9600
C7—C12	1.389 (2)	C15—H15C	0.9600
С7—С8	1.391 (2)	C16—H16A	0.9600
С8—С9	1.379 (2)	C16—H16B	0.9600
C8—C11	1.7383 (18)	C16—H16C	0.9600
C9—C10	1.370 (3)	N4—H4A	0.8600
C2—C1—N1	124.75 (17)	C11—C12—Cl2	117.84 (15)
C2—C1—H1	117.6	C7—C12—Cl2	119.48 (13)
N1-C1-H1	117.6	N4—C13—C14	109.91 (16)
C1-C2-N3	117.18 (17)	N4—C13—C16	111.05 (16)
C1—C2—H2	121.4	C14—C13—C16	110.3 (3)
N3—C2—H2	121.4	N4—C13—C15	106.32 (19)
N2-C3-N3	111.51 (13)	C14—C13—C15	110.4 (3)
N2-C3-C4	131.36 (16)	C16—C13—C15	108.7 (2)
N3—C3—C4	117.12 (15)	C13—C14—H14A	109.5
N1-C4-C3	122.75 (18)	C13—C14—H14B	109.5

N1—C4—H4	118.6	H14A—C14—H14B	109.5
C3—C4—H4	118.6	C13—C14—H14C	109.5
C6—C5—N3	104.18 (13)	H14A—C14—H14C	109.5
C6—C5—N4	134.65 (14)	H14B—C14—H14C	109.5
N3—C5—N4	121.10 (13)	C13—C15—H15A	109.5
N2—C6—C5	112.36 (13)	C13—C15—H15B	109.5
N2—C6—C7	122.10(13)	H15A—C15—H15B	109.5
C5—C6—C7	125.53 (13)	C13—C15—H15C	109.5
C12—C7—C8	115.75 (14)	H15A—C15—H15C	109.5
C12—C7—C6	121.53 (14)	H15B—C15—H15C	109.5
C8—C7—C6	122.64 (14)	C13—C16—H16A	109.5
C9—C8—C7	122.83 (17)	C13—C16—H16B	109.5
C9—C8—C11	117.98 (14)	H16A—C16—H16B	109.5
C7—C8—Cl1	119.18 (12)	C_{13} — C_{16} — $H_{16}C$	109.5
C10—C9—C8	119.10 (18)	H16A—C16—H16C	109.5
C10-C9-H9	120.4	H16B-C16-H16C	109.5
C8-C9-H9	120.1	C4 - N1 - C1	117 39 (16)
C9-C10-C11	120.1	$C_3 = N_2 = C_6$	10455(13)
C9-C10-H10	119.7	$C_{2} = N_{3} = C_{3}$	101.33(13) 120.81(14)
$C_{11} - C_{10} - H_{10}$	119.7	$C_2 = N_3 = C_5$	120.01(11) 131.78(14)
C10-C11-C12	119.06 (19)	$C_{3} = N_{3} = C_{5}$	107.39(12)
C10-C11-H11	120.5	$C_{5} N_{4} C_{13}$	107.39(12) 121.18(14)
C_{12} C_{11} H_{11}	120.5	$C_5 = N_4 = H_4 A$	119.4
$C_{11} - C_{12} - C_{7}$	120.5	$C_3 = N_4 = H_4 \Lambda$	119.4
011-012-07	122.00 (17)		117.4
N1-C1-C2-N3	-0.2(3)	C8—C7—C12—Cl2	179.44 (13)
N2-C3-C4-N1	-178.52(19)	C6-C7-C12-C12	2.7 (2)
N3-C3-C4-N1	0.4 (3)	C_{3} — C_{4} — N_{1} — C_{1}	0.2(3)
N3-C5-C6-N2	0.31(18)	C2-C1-N1-C4	-0.3(3)
N4-C5-C6-N2	-176.49(17)	$N_3 - C_3 - N_2 - C_6$	0.44(19)
N3-C5-C6-C7	-178.54(14)	C4-C3-N2-C6	179.42 (19)
N4—C5—C6—C7	4.7 (3)	C5-C6-N2-C3	-0.46(19)
N2—C6—C7—C12	-71.1(2)	C7-C6-N2-C3	178.43 (15)
$C_{5}-C_{6}-C_{7}-C_{12}$	107.6(2)	C1 - C2 - N3 - C3	0.8(2)
N2-C6-C7-C8	112.39 (19)	C1 - C2 - N3 - C5	178.89 (16)
C5-C6-C7-C8	-68.9(2)	N2-C3-N3-C2	178.22 (14)
C12-C7-C8-C9	-1.6(3)	C4 - C3 - N3 - C2	-0.9(2)
C6-C7-C8-C9	175 10 (17)	N_{2} C_{3} N_{3} C_{5}	-0.26(18)
$C_{12} - C_{7} - C_{8} - C_{11}$	177 99 (13)	C4 - C3 - N3 - C5	-17940(15)
C6-C7-C8-C11	-53(2)	C6-C5-N3-C2	-17828(16)
C7-C8-C9-C10	0.9(3)	N4-C5-N3-C2	-0.9(3)
$C_{11} - C_{8} - C_{9} - C_{10}$	-17866(18)	C6-C5-N3-C3	-0.03(16)
C8-C9-C10-C11	0.2(4)	N4-C5-N3-C3	177 31 (14)
C9-C10-C11-C12	-0.5(4)	C6—C5—N4—C13	-87.5 (2)
C10-C11-C12-C7	-0.3(4)	N3-C5-N4-C13	96 14 (18)
C10-C11-C12-C12	-17848(19)	C14-C13-N4-C5	-402(3)
C8-C7-C12-C11	1.3 (3)	C16-C13-N4-C5	82.2.(2)
C6-C7-C12-C11	-175.48(19)	C_{15} C_{13} N_{4} C_{5}	-159.7(2)
			(-)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
C4—H4····N2 ⁱ	0.93	2.62	3.500 (3)	158

Symmetry code: (i) -x+2, -y, -z.