[Journal logo]

Volume 69 
Part 6 
Pages o957-o958  
June 2013  

Received 13 May 2013
Accepted 20 May 2013
Online 25 May 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.004 Å
R = 0.039
wR = 0.088
Data-to-parameter ratio = 6.8
Details
Open access

L-Histidinium dipicrate dihydrate

aDepartment of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, Tamil Nadu, India,bSchool of Chemistry, University of Hyderabad, Hyderabad 500 046, Andhra Pradesh, India, and cDepartment of Physics, The New College (Autonomous), Chennai 600 014, India
Correspondence e-mail: mnizam_new@yahoo.in

In the title molecular salt, C6H11N3O22+·2C6H2N3O7-·2H2O, the histidine molecule exists as a histidinium dication, being protonated at the N atom of the imidazole ring. The charges are balanced by two picrate anions and the compound crystallizes as a dihydrate. In the crystal, the components are linked via N-H...O and O-H...O hydrogen bonds and weak C-H...O interactions, forming a three-dimensional supermolecular structure.

Related literature

For the role of hydrogen bonding in the construction of supramolecular structures, see: Braga et al. (2004[Braga, D., Maini, L., Polito, M. & Grepioni, F. (2004). Struct. Bond. 111, 1-32.]); Harrowfield et al. (1995[Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995). Aust. J. Chem. 48, 1311-1331.]). For picrates of biologically important molecules, see: Harrison et al. (2007[Harrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.]); Swamy et al. (2007[Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.]); Bibal et al. (2003[Bibal, B., Declercq, J. P., Dutasta, J. P., Tinant, B. & Valade, A. G. (2003). Tetrahedron, 59, 5849-5854.]); Olsher et al. (1996[Olsher, U., Feinberg, H., Frolow, F. & Shoham, G. (1996). Pure Appl. Chem. 68, 1195-1199.]). For bond angles in related structures, see: Yang et al. (2001[Yang, L., Zhang, T. L., Feng, C. G., Zhang, J. G. & Yu, K. B. (2001). Energ. Mater. 9, 37-39.]).

[Scheme 1]

Experimental

Crystal data
  • C6H11N3O22+·2C6H2N3O7-·2H2O

  • Mr = 649.42

  • Monoclinic, P 21

  • a = 6.6060 (4) Å

  • b = 25.7003 (13) Å

  • c = 7.9627 (5) Å

  • [beta] = 107.532 (7)°

  • V = 1289.08 (13) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.15 mm-1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.985

  • 5817 measured reflections

  • 2982 independent reflections

  • 2560 reflections with I > 2[sigma](I)

  • Rint = 0.020

Refinement
  • R[F2 > 2[sigma](F2)] = 0.039

  • wR(F2) = 0.088

  • S = 1.09

  • 2982 reflections

  • 439 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.21 e Å-3

  • [Delta][rho]min = -0.18 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1A...O10 0.89 2.19 2.909 (3) 138
N1-H1A...O12 0.89 2.11 2.841 (4) 139
N1-H1B...O18W 0.89 1.85 2.700 (5) 158
N1-H1C...O15i 0.89 2.16 3.007 (4) 159
N2-H2B...O10 0.91 (5) 1.86 (5) 2.709 (4) 154 (4)
N2-H2B...O16 0.91 (5) 2.49 (4) 3.125 (4) 128 (3)
N3-H3...O9ii 0.86 2.56 2.992 (5) 112
N3-H3...O14ii 0.86 2.25 3.077 (4) 160
O2-H2...O3iii 0.82 1.86 2.657 (3) 165
O17W-H17A...O5iv 0.84 (2) 2.27 (3) 3.082 (4) 162 (9)
O17W-H17B...O3 0.84 (2) 2.14 (8) 2.864 (4) 144 (12)
O18W-H18A...O17Wv 0.83 (2) 1.83 (2) 2.664 (5) 176 (5)
O18W-H18B...O7 0.83 (2) 2.32 (4) 3.005 (5) 140 (6)
C3-H3B...O10 0.97 2.59 3.210 (4) 122
C9-H9...O8vi 0.93 2.40 3.177 (4) 141
C17-H17...O11iv 0.93 2.36 3.177 (3) 147
Symmetry codes: (i) x+1, y, z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x+2, y-{\script{1\over 2}}, -z+2]; (iv) x, y, z-1; (v) [-x+2, y-{\script{1\over 2}}, -z+1]; (vi) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2602 ).


Acknowledgements

MS thanks the UGC Networking Centre, School of Chemistry, University of Hyderabad, India, for the award of a Visiting Research Fellowship to use the facilities at the School, which the authors also thank for access to the X-ray diffraction equipment.

References

Bibal, B., Declercq, J. P., Dutasta, J. P., Tinant, B. & Valade, A. G. (2003). Tetrahedron, 59, 5849-5854.  [ISI] [CSD] [CrossRef] [ChemPort]
Braga, D., Maini, L., Polito, M. & Grepioni, F. (2004). Struct. Bond. 111, 1-32.  [CrossRef] [ChemPort]
Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Harrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.  [CSD] [CrossRef] [details]
Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995). Aust. J. Chem. 48, 1311-1331.  [CrossRef] [ChemPort] [ISI]
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [ISI] [CrossRef] [ChemPort] [details]
Olsher, U., Feinberg, H., Frolow, F. & Shoham, G. (1996). Pure Appl. Chem. 68, 1195-1199.  [CrossRef] [ChemPort] [ISI]
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [ChemPort] [details]
Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.  [CSD] [CrossRef] [details]
Yang, L., Zhang, T. L., Feng, C. G., Zhang, J. G. & Yu, K. B. (2001). Energ. Mater. 9, 37-39.


Acta Cryst (2013). E69, o957-o958   [ doi:10.1107/S1600536813013949 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.