supplementary materials


su2606 scheme

Acta Cryst. (2013). E69, m349-m350    [ doi:10.1107/S160053681301458X ]

Diaquabis(3-chlorobenzoato-[kappa]O)bis(nicotinamide-[kappa]N1)cobalt(II)

N. Bozkurt, N. Dilek, N. Çaylak Delibas, H. Necefoglu and T. Hökelek

Abstract top

In the title complex, [Co(C7H4ClO2)2(C6H6N2O)2(H2O)2], the CoII atom is located on an inversion center and is coordinated by two 3-chlorobenzoate (CB) anions, two nicotinamide (NA) ligands and two water molecules. The four O atoms in the equatorial plane form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxylate group and the adjacent benzene ring is 9.14 (9)°, while the pyridine and benzene rings are oriented at a dihedral angle of 82.18 (8)°. In the crystal, N-H...O and O-H...O hydrogen bonds link the molecules into a two-dimensional network lying parallel to (101). [pi]-[pi] stacking between parallel pyridine rings of adjacent molecules [centroid-centroid distance = 3.7765 (8) Å] further stabilizes the crystal structure.

Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

In the title mononuclear complex, CoII atom is located on an inversion center and is coordinated by two 3-chlorobenzoate (CB) anions, two nicotinamide (NA) ligands and two water molecules, all ligands coordinating in a monodentate manner (Fig. 1). The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2] (Hökelek et al., 1996), [Cu(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2011a), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2] (Hökelek & Necefoğlu, 1998), [Co(C9H9O2)2(C10H14N2O)2(H2O)2] (Necefoğlu et al., 2011b), [Co(C7H4IO2)2(C6H6N2O)2(H2O)2] (Aydın et al., 2012), [Co(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012a), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), [Ni(C5H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012b), [Mn(C9H10NO2)2(H2O)4].2H2O (Hökelek & Necefoğlu, 2007), [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009b) and [Zn(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2012c) have been reported. In the copper(II) complex mentioned above the two benzoate ions coordinate to the CuII atom as bidentate ligands, while in the other structures all the ligands coordinate in a monodentate manner.

In the title complex, Fig. 1, the four symmetry related O atoms (O2, O2a, O4 and O4a) [symmetry code: (a) - x, - y, - z] in the equatorial plane around the CoII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two symmetry related N atoms of the NA ligands (N1 and N1a) in the axial positions. The near equalities of the C1—O1 [1.2435 (19) Å] and C1—O2 [1.2677 (18) Å] bonds in the carboxylate group indicate delocalized bonding arrangement, rather than localized single and double bonds. The Co—O bond lengths are 2.0592 (10) Å (for benzoate oxygens) and 2.1385 (10) Å (for water oxygens), and the Co—N bond length is 2.1641 (11) Å, close to standard values (Allen et al., 1987). The Co atom is displaced out of the mean-plane of the carboxylate group (O1/C1/O2) by -0.5077 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring (C2—C7) is 9.14 (9)°. The benzene (C2—C7) and the pyridine (N1/C8—C12) rings are oriented at a dihedral angle of 82.18 (8)°.

In the crystal, N—H···O and O—H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network lying parallel to (101). π···π stacking between the pyridine rings, Cg···Cgi [symmetry code: (i) -x, -y+1, -z+2, where Cg is the centroid of ring N1/C8—C12] further stabilizes the crystal structure, with a centroid-centroid distance of 3.7765 (8) Å.

Related literature top

For literature on niacin, see: Krishnamachari (1974). For information on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Aydın et al. (2012); Hökelek et al. (1996, 2009a,b); Hökelek & Necefoğlu (1998, 2007); Necefoğlu et al. (2011a,b); Sertçelik et al. (2012a,b,c). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of CoSO4.H2O (0.865 g, 5 mmol) in H2O (25 ml) and nicotinamide (1.22 g, 50 mmol) in H2O (100 ml) with sodium 3-chlorobenzoate (1.79 g, 10 mmol) in H2O (100 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving pink single crystals.

Refinement top

Atoms H21 and H22 (for NH2) and H41 and H42 (for H2O) were located in a difference Fourier map and were refined freely. The C-bound H-atoms were positioned geometrically with C—H = 0.93 Å for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 × Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) - x, - y, - z].
Diaquabis(3-chlorobenzoato-κO)bis(nicotinamide-κN1)cobalt(II) top
Crystal data top
[Co(C7H4ClO2)2(C6H6N2O)2(H2O)2]F(000) = 666
Mr = 650.32Dx = 1.574 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4857 reflections
a = 11.5181 (3) Åθ = 2.3–24.4°
b = 8.8191 (2) ŵ = 0.88 mm1
c = 13.5089 (3) ÅT = 294 K
β = 90.546 (2)°Block, pink
V = 1372.16 (6) Å30.35 × 0.22 × 0.18 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2797 independent reflections
Radiation source: fine-focus sealed tube2667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1414
Tmin = 0.793, Tmax = 0.854k = 1110
18960 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.5258P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2797 reflectionsΔρmax = 0.32 e Å3
204 parametersΔρmin = 0.33 e Å3
52 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0334 (17)
Crystal data top
[Co(C7H4ClO2)2(C6H6N2O)2(H2O)2]V = 1372.16 (6) Å3
Mr = 650.32Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.5181 (3) ŵ = 0.88 mm1
b = 8.8191 (2) ÅT = 294 K
c = 13.5089 (3) Å0.35 × 0.22 × 0.18 mm
β = 90.546 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2797 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2667 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.854Rint = 0.027
18960 measured reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.32 e Å3
S = 1.11Δρmin = 0.33 e Å3
2797 reflectionsAbsolute structure: ?
204 parametersFlack parameter: ?
52 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.000001.000001.000000.0221 (1)
Cl10.57400 (4)0.77742 (8)0.87425 (3)0.0604 (2)
O10.17264 (10)0.87980 (18)1.18080 (9)0.0518 (4)
O20.17291 (8)0.94984 (12)1.02212 (8)0.0299 (3)
O30.16810 (10)0.34420 (12)0.81282 (10)0.0415 (4)
O40.04558 (10)1.07995 (12)0.85606 (8)0.0298 (3)
N10.02319 (10)0.77771 (13)0.93492 (9)0.0258 (3)
N20.23334 (16)0.56716 (18)0.76095 (16)0.0592 (6)
C10.21833 (12)0.88839 (17)1.09796 (11)0.0293 (4)
C20.33518 (12)0.81535 (17)1.08465 (11)0.0286 (4)
C30.39495 (13)0.83285 (18)0.99657 (11)0.0316 (4)
C40.49988 (13)0.7599 (2)0.98487 (12)0.0368 (5)
C50.54679 (15)0.6700 (2)1.05879 (14)0.0464 (6)
C60.48691 (17)0.6533 (2)1.14586 (14)0.0496 (6)
C70.38168 (15)0.7255 (2)1.15907 (12)0.0388 (5)
C80.06524 (12)0.70512 (15)0.89207 (11)0.0268 (4)
C90.05526 (12)0.56102 (15)0.85229 (10)0.0258 (4)
C100.05151 (14)0.48869 (16)0.85705 (12)0.0314 (4)
C110.14353 (13)0.56408 (18)0.89921 (13)0.0356 (5)
C120.12591 (12)0.70790 (16)0.93721 (11)0.0303 (4)
C130.15664 (14)0.48213 (16)0.80673 (12)0.0304 (4)
H30.364600.893000.946100.0380*
H50.617700.621601.049900.0560*
H60.517500.592901.196200.0590*
H70.342000.713601.218200.0470*
H80.136700.753800.888900.0320*
H100.060900.391000.832200.0380*
H110.216400.518900.902000.0430*
H120.188300.758100.965600.0360*
H210.221 (2)0.659 (3)0.7492 (19)0.066 (7)*
H220.293 (2)0.526 (3)0.7323 (19)0.063 (7)*
H410.028 (2)1.098 (3)0.8311 (18)0.069 (7)*
H420.079 (2)1.163 (3)0.8530 (17)0.055 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0201 (2)0.0183 (2)0.0280 (2)0.0011 (1)0.0066 (1)0.0026 (1)
Cl10.0389 (2)0.1013 (4)0.0412 (3)0.0171 (2)0.0140 (2)0.0029 (2)
O10.0339 (6)0.0875 (10)0.0342 (6)0.0108 (6)0.0090 (5)0.0038 (6)
O20.0230 (5)0.0306 (5)0.0362 (5)0.0039 (4)0.0044 (4)0.0007 (4)
O30.0403 (6)0.0194 (5)0.0651 (8)0.0024 (4)0.0211 (5)0.0007 (5)
O40.0297 (5)0.0267 (6)0.0332 (5)0.0023 (4)0.0098 (4)0.0001 (4)
N10.0256 (6)0.0205 (5)0.0313 (6)0.0005 (4)0.0049 (5)0.0027 (4)
N20.0569 (10)0.0231 (7)0.0985 (14)0.0036 (7)0.0507 (10)0.0049 (8)
C10.0247 (7)0.0308 (7)0.0324 (7)0.0020 (5)0.0034 (5)0.0042 (6)
C20.0261 (7)0.0297 (7)0.0301 (7)0.0001 (6)0.0001 (5)0.0025 (6)
C30.0273 (7)0.0369 (8)0.0307 (7)0.0051 (6)0.0000 (6)0.0031 (6)
C40.0286 (7)0.0489 (10)0.0331 (8)0.0054 (6)0.0038 (6)0.0028 (7)
C50.0344 (8)0.0564 (11)0.0482 (10)0.0200 (8)0.0027 (7)0.0004 (8)
C60.0479 (10)0.0572 (11)0.0435 (10)0.0165 (9)0.0075 (8)0.0127 (8)
C70.0401 (9)0.0459 (9)0.0303 (8)0.0038 (7)0.0005 (6)0.0045 (7)
C80.0251 (6)0.0214 (6)0.0339 (7)0.0006 (5)0.0068 (5)0.0010 (5)
C90.0292 (7)0.0197 (6)0.0287 (7)0.0017 (5)0.0063 (5)0.0004 (5)
C100.0336 (8)0.0220 (7)0.0388 (8)0.0030 (5)0.0051 (6)0.0062 (5)
C110.0270 (7)0.0312 (8)0.0486 (9)0.0058 (6)0.0062 (6)0.0072 (7)
C120.0249 (7)0.0276 (7)0.0384 (8)0.0010 (5)0.0073 (6)0.0032 (6)
C130.0320 (8)0.0211 (7)0.0382 (8)0.0000 (5)0.0112 (6)0.0025 (6)
Geometric parameters (Å, º) top
Co1—O22.0592 (9)C2—C31.389 (2)
Co1—O42.1385 (11)C3—C41.380 (2)
Co1—N12.1640 (12)C4—C51.381 (2)
Co1—O2i2.0592 (9)C5—C61.377 (3)
Co1—O4i2.1385 (11)C6—C71.382 (3)
Co1—N1i2.1640 (12)C8—C91.3841 (19)
Cl1—C41.7350 (16)C9—C131.497 (2)
O1—C11.2435 (19)C9—C101.387 (2)
O2—C11.2676 (18)C10—C111.379 (2)
O3—C131.2262 (18)C11—C121.383 (2)
O4—H410.92 (2)C3—H30.9300
O4—H420.83 (3)C5—H50.9300
N1—C121.3344 (18)C6—H60.9300
N1—C81.3392 (18)C7—H70.9300
N2—C131.317 (2)C8—H80.9300
N2—H210.84 (3)C10—H100.9300
N2—H220.87 (2)C11—H110.9300
C1—C21.504 (2)C12—H120.9300
C2—C71.384 (2)
O2—Co1—O487.55 (4)Cl1—C4—C3119.73 (12)
O2—Co1—N188.84 (4)C3—C4—C5121.47 (15)
O2—Co1—O2i180.00Cl1—C4—C5118.79 (13)
O2—Co1—O4i92.45 (4)C4—C5—C6118.90 (16)
O2—Co1—N1i91.16 (4)C5—C6—C7120.53 (17)
O4—Co1—N187.69 (4)C2—C7—C6120.25 (15)
O2i—Co1—O492.45 (4)N1—C8—C9123.09 (13)
O4—Co1—O4i180.00C8—C9—C13121.62 (13)
O4—Co1—N1i92.31 (4)C8—C9—C10118.33 (13)
O2i—Co1—N191.16 (4)C10—C9—C13120.05 (12)
O4i—Co1—N192.31 (4)C9—C10—C11118.86 (13)
N1—Co1—N1i180.00C10—C11—C12119.01 (14)
O2i—Co1—O4i87.55 (4)N1—C12—C11122.80 (13)
O2i—Co1—N1i88.84 (4)N2—C13—C9117.24 (13)
O4i—Co1—N1i87.69 (4)O3—C13—N2121.59 (16)
Co1—O2—C1126.89 (9)O3—C13—C9121.16 (14)
H41—O4—H42105 (2)C2—C3—H3120.00
Co1—O4—H4199.0 (15)C4—C3—H3120.00
Co1—O4—H42117.1 (16)C4—C5—H5121.00
Co1—N1—C8121.14 (9)C6—C5—H5121.00
Co1—N1—C12120.97 (9)C5—C6—H6120.00
C8—N1—C12117.88 (12)C7—C6—H6120.00
H21—N2—H22117 (2)C2—C7—H7120.00
C13—N2—H21121.8 (16)C6—C7—H7120.00
C13—N2—H22120.5 (17)N1—C8—H8118.00
O1—C1—O2125.34 (14)C9—C8—H8118.00
O1—C1—C2117.92 (13)C9—C10—H10121.00
O2—C1—C2116.70 (13)C11—C10—H10121.00
C1—C2—C3120.41 (13)C10—C11—H11121.00
C1—C2—C7119.92 (13)C12—C11—H11120.00
C3—C2—C7119.63 (14)N1—C12—H12119.00
C2—C3—C4119.23 (14)C11—C12—H12119.00
O4—Co1—O2—C1177.85 (12)O2—C1—C2—C7169.65 (14)
N1—Co1—O2—C190.11 (12)C1—C2—C3—C4177.53 (14)
O4i—Co1—O2—C12.15 (12)C7—C2—C3—C40.1 (2)
N1i—Co1—O2—C189.89 (12)C1—C2—C7—C6177.50 (15)
O2—Co1—N1—C826.16 (11)C3—C2—C7—C60.1 (2)
O2—Co1—N1—C12153.10 (11)C2—C3—C4—Cl1178.62 (12)
O4—Co1—N1—C861.44 (11)C2—C3—C4—C50.0 (2)
O4—Co1—N1—C12119.31 (11)Cl1—C4—C5—C6178.62 (14)
O2i—Co1—N1—C8153.84 (11)C3—C4—C5—C60.1 (3)
O2i—Co1—N1—C1226.90 (11)C4—C5—C6—C70.1 (3)
O4i—Co1—N1—C8118.56 (11)C5—C6—C7—C20.1 (3)
O4i—Co1—N1—C1260.69 (11)N1—C8—C9—C100.1 (2)
Co1—O2—C1—O118.0 (2)N1—C8—C9—C13178.77 (13)
Co1—O2—C1—C2159.69 (10)C8—C9—C10—C111.3 (2)
Co1—N1—C8—C9177.93 (11)C13—C9—C10—C11179.86 (14)
C12—N1—C8—C91.4 (2)C8—C9—C13—O3146.12 (16)
Co1—N1—C12—C11177.98 (12)C8—C9—C13—N233.2 (2)
C8—N1—C12—C111.3 (2)C10—C9—C13—O332.7 (2)
O1—C1—C2—C3174.24 (15)C10—C9—C13—N2148.03 (17)
O1—C1—C2—C78.2 (2)C9—C10—C11—C121.3 (2)
O2—C1—C2—C37.9 (2)C10—C11—C12—N10.0 (2)
Symmetry code: (i) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O3ii0.84 (3)2.24 (3)2.876 (2)133 (2)
N2—H22···O4iii0.87 (2)2.27 (2)3.012 (2)143 (2)
O4—H41···O1i0.92 (2)1.68 (2)2.5822 (16)164 (2)
O4—H42···O3iv0.83 (3)1.98 (3)2.7892 (15)166 (2)
Symmetry codes: (i) x, y+2, z+2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O3i0.84 (3)2.24 (3)2.876 (2)133 (2)
N2—H22···O4ii0.87 (2)2.27 (2)3.012 (2)143 (2)
O4—H41···O1iii0.92 (2)1.68 (2)2.5822 (16)164 (2)
O4—H42···O3iv0.83 (3)1.98 (3)2.7892 (15)166 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2; (iii) x, y+2, z+2; (iv) x, y+1, z.
Acknowledgements top

The authors are indebted to Aksaray University and Science and Technology Application and Research Center of Aksaray University, Aksaray, Turkey, for the use of the X-ray diffractometer.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Aydın, Ö., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m521–m522.

Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.

Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.

Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607–m608.

Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.

Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.

Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.

Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.

Necefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011b). Acta Cryst. E67, m619–m620.

Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011a). Acta Cryst. E67, m900–m901.

Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012a). Acta Cryst. E68, m1091–m1092.

Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012b). Acta Cryst. E68, m946–m947.

Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012c). Acta Cryst. E68, m1067–m1068.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.