organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1*S*,3*R*,8*R*)-2,2-Dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.0^{1,3}]dodec-9-en-11one

Naja Ourhriss,^a Ahmed Benharref,^a Abdelouahd Oukhrib,^a Jean-Claude Daran^b and Moha Berraho^a*

^aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and ^bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France Correspondence e-mail: berraho@uca.ma

Received 29 April 2013; accepted 30 April 2013

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.004 Å; R factor = 0.028; wR factor = 0.065; data-to-parameter ratio = 10.4.

The title compound, $C_{16}H_{22}Cl_2O$, was synthesized from β himachalene (3,5,5,9-tetramethyl-2,4a,5,6,7,8-hexahydro-1*H*benzocycloheptene), which was isolated from the essential oil of the Atlas cedar (*Cedrus Atlantica*). The molecule is built up from fused six- and seven-membered rings and an additional three-membered ring arising from the reaction of himachalene with dichlorocarbene. The six-membered ring has an envelope conformation, with the C atom belonging to the three-membered ring forming the flap, whereas the sevenmembered ring displays a screw-boat conformation; the dihedral angle between the rings (all atoms) is 59.65 (14)°.

Related literature

For background to the essential oil of the Alas cedar (*Cedrus atlantica*), see: Joseph & Dev (1968); Plattier & Teiseire (1974). For the reactivity and biological properties of β -himachalene, see: Benharref *et al.* (2012); Chekroun *et al.* (2000); El Jamili *et al.* (2002); Lassaba *et al.* (1998); Dakir *et al.* (2004); Daoubi *et al.* (2004). For conformational analysis, see: Cremer & Pople (1975).

Experimental

Crystal data

C₁₆H₂₂Cl₂O $M_r = 301.24$ Monoclinic, P2₁ a = 8.8780 (3) Å b = 10.3340 (3) Å c = 8.9230 (3) Å $\beta = 108.805$ (4)°

Data collection

Agilent Xcalibur (Eos, Gemini ultra) diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010) $T_{min} = 0.761, T_{max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	
$wR(F^2) = 0.065$	
S = 1.03	
1835 reflections	
176 parameters	
1 restraint	
H-atom parameters constrained	

V = 774.94 (4) Å³ Z = 2Cu K α radiation $\mu = 3.67 \text{ mm}^{-1}$ T = 180 K $0.30 \times 0.25 \times 0.21 \text{ mm}$

2787 measured reflections 1835 independent reflections 1779 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$ $\theta_{\text{max}} = 60.6^{\circ}$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.16 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{\rm min} = -0.17 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack & } \\ \mbox{ Bernardinelli (2000), 614 Friedel } \\ \mbox{ pairs } \\ \mbox{ Flack parameter: 0.014 (15) } \end{array}$

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5222).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Benharref, A., El Ammari, L., Lassaba, E., Ourhriss, N. & Berraho, M. (2012). Acta Cryst. E68, 02502.

- Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008.
- Daoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.
- El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). *Tetrahedron Lett.* 43, 6645–6648.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Joseph, T. C. & Dev, S. (1968). *Tetrahedron*, **24**, 3841–3859. Lassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C.
- & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641–2651.
- Plattier, M. & Teiseire, P. (1974). Recherche, 19, 131-144.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supporting information

Acta Cryst. (2013). E69, o830 [doi:10.1107/S1600536813011781]

(1*S*,3*R*,8*R*)-2,2-Dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.0^{1,3}]dodec-9-en-11one

Naja Ourhriss, Ahmed Benharref, Abdelouahd Oukhrib, Jean-Claude Daran and Moha Berraho

S1. Comment

The essential oil of the Alas cedar (*Cedrus atlantica*) consist mainly (50%) of a bicyclic hydrocarbon called essential oil of the Alas cedar (*Cedrus atlantica*) consist mainly (50%) of a bicyclic hydrocarbon called (Joseph & Dev, 1968; Plattier & Teiseire, 1974). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Lassaba *et al.*, 1998; Chekroun *et al.*, 2000; El Jamili *et al.*, 2002; Dakir *et al.*, 2004; Benharref *et al.* 2012). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen *Botrytis cinerea* (Daoubi *et al.*, 2004). We present here the crystal structure of the title compound, (1S,3R,8R)-2,2-dichloro-3,7,7,10-tetramethyltricyclo [6.4.0.0^{1,3}]dodec-9-en-10-one. The molecule is built up from two fused six-and seven- membered rings and an additional three-membered ring from the reaction with the carbene (Fig. 1). The six-membered ring has an envelope conformation, as indicated by the total puckering amplitude QT = 0.453 (3) Å and spherical polar angle $\theta = 123.4$ (4)° with $\varphi = 170.0$ (4)°, whereas the seven-membered ring display a boat conformation with QT = 1.1545 (3) Å, $\theta = 87.74$ (2)°, $\varphi 2 = -48.13$ (14)° and $\varphi 3 = -134.45$ (4)° (Cremer & Pople, 1975). Owing to the presence of Cl atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli, 2000) as C1(*S*), C3(*R*) and C8(*R*).

S2. Experimental

In a reactor containing a solution of (1S, 3R, 8R)-2,2- dichloro-3,7,7,10 tetramethyltricyclo [6.4.0.0¹,³] dodec-9-ene (1 g, 3.48 mmol) (El Jamili *et al.*, 2002) in 50 ml tetrahydrofuran and water (THF/H₂O) (4:1) cooled to 273 K and kept in the dark, was added in small portions 1.23 g (6.96 mmol) of *N*-bromosccinimide (NBS). The reaction mixture was left stirring for 1 h, after which 20 ml of a saturated solution of NaHCO₃ was added. Subsequently, the extraction was performed three times with diethyl ether (3x 20 ml). The organic extracts were dried over Na₂SO₄, filtered, concentrated, and chromatographed. The title compound was obtained with a yield of 80% and was recrystallized from its hexane solution.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98 Å (methine) with $U_{iso}(H) = 1.2U_{eq}(methylene, methine)$ or $U_{iso}(H) = 1.5U_{eq}(methyl)$. Owing to the tiny size of the crystal and to define the correct absolute structure determination, the data were collected using Cu radiation.

Figure 1

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.

(1*S*,3*R*,8*R*)-2,2-Dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.0^{1,3}]dodec-9-en-11-one

Crystal data	
$C_{16}H_{22}Cl_{2}O$ $M_{r} = 301.24$ Monoclinic, P2 ₁ Hall symbol: P 2yb $a = 8.8780 (3) \text{ Å}$ $b = 10.3340 (3) \text{ Å}$ $c = 8.9230 (3) \text{ Å}$ $\beta = 108.805 (4)^{\circ}$ $V = 774.94 (4) \text{ Å}^{3}$ $Z = 2$	F(000) = 320 $D_x = 1.291 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.5418 \text{ Å}$ Cell parameters from 1955 reflections $\theta = 4.3-60.5^{\circ}$ $\mu = 3.67 \text{ mm}^{-1}$ T = 180 K Block, colourless $0.30 \times 0.25 \times 0.21 \text{ mm}$
Data collection	
Agilent Xcalibur (Eos, Gemini ultra) diffractometer Radiation source: Enhance Ultra (Cu) X-ray Source Mirror monochromator Detector resolution: 16.1978 pixels mm ⁻¹ ω scans	Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) $T_{min} = 0.761, T_{max} = 1.000$ 2787 measured reflections 1835 independent reflections 1779 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$

$\theta_{\rm max} = 60.6^\circ, \theta_{\rm min} = 5.2^\circ$	$k = -11 \rightarrow 11$
$h = -9 \rightarrow 8$	$l = -8 \rightarrow 10$
Refinement	
Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H-atom parameters constrained
$wR(F^2) = 0.065$	$w = 1/[\sigma^2(F_o^2) + (0.0268P)^2]$
<i>S</i> = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
1835 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
176 parameters	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack & Bernardinelli (2000), 614 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.014 (15)
map	

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.37702 (8)	0.87301 (6)	0.63481 (9)	0.04024 (19)
Cl2	0.53172 (8)	0.67535 (7)	0.51438 (9)	0.0422 (2)
01	0.7317 (2)	0.4592 (2)	0.9131 (3)	0.0472 (6)
C1	0.3527 (3)	0.6081 (2)	0.7144 (3)	0.0230 (6)
C2	0.3817 (3)	0.7052 (2)	0.6004 (3)	0.0278 (6)
C3	0.2321 (3)	0.6249 (2)	0.5493 (3)	0.0280 (6)
C4	0.0763 (3)	0.6914 (3)	0.5429 (3)	0.0367 (7)
H4A	0.0196	0.7190	0.4329	0.044*
H4B	0.1000	0.7696	0.6105	0.044*
C5	-0.0311 (3)	0.6006 (3)	0.5995 (4)	0.0417 (8)
H5A	-0.1098	0.6536	0.6294	0.050*
H5B	-0.0906	0.5446	0.5100	0.050*
C6	0.0567 (3)	0.5144 (3)	0.7398 (3)	0.0366 (7)
H6A	0.1202	0.4510	0.7025	0.044*
H6B	-0.0241	0.4650	0.7708	0.044*
C7	0.1685 (3)	0.5800 (3)	0.8897 (3)	0.0310 (6)
C8	0.3075 (3)	0.6569 (3)	0.8553 (3)	0.0249 (6)
H8	0.2677	0.7473	0.8285	0.030*
C9	0.4529 (3)	0.6672 (3)	0.9982 (3)	0.0276 (6)
Н9	0.4453	0.7195	1.0830	0.033*
C10	0.5923 (3)	0.6092 (3)	1.0171 (3)	0.0289 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C11	0.6079 (3)	0.5170(3)	0.8973 (3)	0.0289 (6)	
C12	0.4618 (3)	0.4911 (2)	0.7555 (3)	0.0276 (6)	
H12A	0.4028	0.4166	0.7788	0.033*	
H12B	0.4953	0.4681	0.6633	0.033*	
C13	0.2113 (4)	0.5220 (3)	0.4243 (3)	0.0410 (7)	
H13A	0.1623	0.5602	0.3193	0.061*	
H13B	0.1426	0.4530	0.4411	0.061*	
H13C	0.3154	0.4858	0.4313	0.061*	
C14	0.0742 (4)	0.6748 (4)	0.9559 (4)	0.0483 (8)	
H14A	0.0328	0.7447	0.8794	0.072*	
H14B	0.1439	0.7114	1.0555	0.072*	
H14C	-0.0145	0.6294	0.9753	0.072*	
C15	0.2324 (4)	0.4722 (3)	1.0132 (3)	0.0422 (8)	
H15A	0.3011	0.5103	1.1123	0.063*	
H15B	0.2937	0.4101	0.9733	0.063*	
H15C	0.1429	0.4277	1.0326	0.063*	
C16	0.7361 (3)	0.6288 (3)	1.1612 (4)	0.0395 (8)	
H16A	0.8121	0.6856	1.1345	0.059*	
H16B	0.7863	0.5450	1.1974	0.059*	
H16C	0.7034	0.6686	1.2456	0.059*	

Atomic displacement parameters $(Å^2)$

	U	U^{zz}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0401 (4)	0.0234 (3)	0.0606 (5)	0.0026 (3)	0.0209 (3)	0.0072 (3)
Cl2	0.0418 (4)	0.0447 (4)	0.0518 (4)	0.0023 (3)	0.0313 (3)	0.0049 (4)
01	0.0303 (11)	0.0442 (12)	0.0622 (14)	0.0111 (10)	0.0081 (9)	0.0002 (11)
C1	0.0221 (13)	0.0210 (12)	0.0259 (15)	0.0004 (10)	0.0077 (10)	-0.0016 (11)
C2	0.0249 (14)	0.0268 (14)	0.0358 (16)	0.0033 (10)	0.0153 (11)	0.0027 (12)
C3	0.0240 (14)	0.0314 (15)	0.0292 (15)	0.0012 (11)	0.0093 (11)	0.0024 (11)
C4	0.0246 (15)	0.0439 (17)	0.0376 (17)	0.0060 (12)	0.0046 (11)	0.0013 (14)
C5	0.0207 (14)	0.0578 (19)	0.0425 (18)	-0.0052 (13)	0.0044 (12)	-0.0043 (16)
C6	0.0323 (16)	0.0418 (16)	0.0368 (17)	-0.0130 (13)	0.0126 (12)	-0.0085 (13)
C7	0.0290 (15)	0.0355 (15)	0.0319 (16)	-0.0079 (12)	0.0146 (11)	-0.0076 (13)
C8	0.0224 (13)	0.0252 (14)	0.0273 (14)	0.0002 (11)	0.0084 (10)	-0.0021 (13)
C9	0.0299 (15)	0.0271 (13)	0.0277 (14)	-0.0078 (12)	0.0119 (10)	-0.0036 (13)
C10	0.0274 (16)	0.0276 (14)	0.0301 (16)	-0.0066 (12)	0.0073 (11)	0.0058 (12)
C11	0.0249 (15)	0.0258 (13)	0.0362 (16)	0.0015 (11)	0.0100 (11)	0.0087 (12)
C12	0.0279 (14)	0.0232 (13)	0.0333 (15)	0.0039 (11)	0.0121 (11)	-0.0018 (12)
C13	0.0425 (17)	0.0523 (18)	0.0275 (16)	-0.0021 (14)	0.0105 (13)	-0.0078 (14)
C14	0.0409 (17)	0.0547 (19)	0.061 (2)	-0.0082 (16)	0.0327 (15)	-0.0181 (18)
C15	0.0506 (19)	0.0452 (18)	0.0344 (17)	-0.0140 (15)	0.0189 (13)	0.0004 (15)
C16	0.0299 (16)	0.0473 (19)	0.0361 (17)	-0.0025 (12)	0.0033 (12)	0.0105 (14)

Geometric parameters (Å, °)

Cl1—C2	1.764 (3)	С8—С9	1.497 (3)
Cl2—C2	1.766 (3)	C8—H8	1.0000

O1—C11	1.218 (3)	C9—C10	1.336 (4)
C1—C2	1.509 (4)	С9—Н9	0.9500
C1—C12	1.519 (3)	C10-C11	1.472 (4)
C1—C8	1.523 (4)	C10—C16	1.505 (4)
C1—C3	1.526 (3)	C11—C12	1.516 (4)
C2—C3	1.506 (4)	C12—H12A	0.9900
C3—C13	1.509 (4)	C12—H12B	0.9900
C3—C4	1.529 (4)	С13—Н13А	0.9800
C4—C5	1.534 (4)	C13—H13B	0.9800
C4—H4A	0.9900	C13—H13C	0.9800
C4—H4B	0.9900	C14—H14A	0.9800
C5-C6	1 529 (4)	C14—H14B	0.9800
C5_H5A	0.0000	C14 $H14C$	0.9800
C5_H5B	0.9900	C14 $H15A$	0.9800
C6_C7	1.543(A)	C15_H15R	0.9800
	0.0000	C15—I15B	0.9800
	0.9900		0.9800
Со—нов	0.9900	CI6—HI6A	0.9800
C/-C14	1.526 (4)		0.9800
C/C15	1.541 (4)	C16—H16C	0.9800
C/—C8	1.579 (4)		
C2—C1—C12	117.2 (2)	C1—C8—C7	115.1 (2)
C2—C1—C8	119.0 (2)	С9—С8—Н8	106.2
C12—C1—C8	112.4 (2)	C1—C8—H8	106.2
C2-C1-C3	59.49 (16)	С7—С8—Н8	106.2
C12—C1—C3	121.2 (2)	C10—C9—C8	125.8 (2)
C8-C1-C3	118.0 (2)	С10—С9—Н9	117.1
$C_3 - C_2 - C_1$	60.82(17)	С8—С9—Н9	117.1
C_{3} $-C_{2}$ $-C_{11}$	121.74(18)	C9 - C10 - C11	1199(2)
C1 - C2 - C11	121.15 (19)	C9 - C10 - C16	122.9(3)
C_{3} C_{2} C_{12}	121.13(1)	C_{11} C_{10} C_{16}	122.9(3) 117.1(2)
$C_1 - C_2 - C_{12}$	119.2(2) 119.59(18)	01 - C11 - C10	117.1(2) 1217(2)
C11 - C2 - C12	108 11 (14)	01 - C11 - C12	121.7(2) 120.5(2)
$C_2 = C_1^2$	100.11(14) 1100(2)	C_{10} C_{11} C_{12}	120.3(2) 1177(2)
$C_2 = C_3 = C_{13}$	50.68(17)	$C_{10} = C_{11} = C_{12}$	117.7(2)
$C_2 = C_3 = C_1$	1200(17)	$C_{11} = C_{12} = C_{11}$	100.3
$C_{13}^{} C_{3}^{} C_{4}^{}$	120.9(2) 117.6(2)	C1 - C12 - H12A	109.3
$C_2 = C_3 = C_4$	117.0(2) 112.2(2)	C1 - C12 - H12A	109.3
$C_{13} = C_{3} = C_{4}$	115.5(2) 115.6(2)	C1 - C12 - H12B	109.3
C1 - C3 - C4	115.0 (2)	CI = CI2 = HI2B	109.3
$C_3 = C_4 = C_5$	111.3 (2)	H12A - C12 - H12B	108.0
C_{2} C_{4} H_{4}	109.4	$C_{2} = C_{12} = H_{12}$	109.5
C_{2} C_{4} H_{4} H_{4}	109.4		109.5
C3-C4-H4B	109.4	H13A—U13—H13B	109.5
C5—C4—H4B	109.4	C3—C13—H13C	109.5
H4A—C4—H4B	108.0	H13A—C13—H13C	109.5
C6-C5-C4	114.8 (2)	H13B—C13—H13C	109.5
С6—С5—Н5А	108.6	C7—C14—H14A	109.5
C4—C5—H5A	108.6	C7—C14—H14B	109.5

С6—С5—Н5В	108.6	H14A—C14—H14B	109.5
C4—C5—H5B	108.6	C7—C14—H14C	109.5
H5A—C5—H5B	107.6	H14A—C14—H14C	109.5
C5—C6—C7	118.0 (3)	H14B—C14—H14C	109.5
С5—С6—Н6А	107.8	C7—C15—H15A	109.5
С7—С6—Н6А	107.8	C7—C15—H15B	109.5
С5—С6—Н6В	107.8	H15A—C15—H15B	109.5
С7—С6—Н6В	107.8	С7—С15—Н15С	109.5
H6A—C6—H6B	107.1	H15A—C15—H15C	109.5
C14—C7—C15	108.0 (2)	H15B—C15—H15C	109.5
C14—C7—C6	109.7 (2)	C10—C16—H16A	109.5
С15—С7—С6	106.7 (2)	C10-C16-H16B	109.5
C14—C7—C8	108.2 (2)	H16A—C16—H16B	109.5
C15—C7—C8	111.9 (2)	C10—C16—H16C	109.5
C6—C7—C8	112.2 (2)	H16A—C16—H16C	109.5
C9—C8—C1	110.0 (2)	H16B—C16—H16C	109.5
C9—C8—C7	112.5 (2)		