supplementary materials


tk5225 scheme

Acta Cryst. (2013). E69, o887    [ doi:10.1107/S1600536813012701 ]

5-Cyclohexyl-2-(2-fluorophenyl)-3-methylsulfinyl-1-benzofuran

H. D. Choi, P. J. Seo and U. Lee

Abstract top

In the title compound, C21H21FO2S, the cyclohexyl ring adopts a chair conformation. The 2-fluorobenzene ring makes a dihedral angle of 38.68 (6)° with the mean plane [r.m.s. deviation = 0.018 (2) Å] of the benzofuran fragment. In the crystal, molecules are linked by pairs of C-H...O hydrogen bonds into dimers, which are further packed into stacks along the c axis by C-H...O hydrogen bonds. In addition, the stacked molecules exhibit S...O contacts [3.1733 (13) Å] involving the sulfinyl groups. The F atom is disordered over two positions, with site-occupancy factors of 0.961 (3) and 0.039 (3).

Comment top

As a part of our continuing study of 5-cyclohexyl-3-methylsulfinyl-1-benzofuran derivatives containing 4-fluorophenyl (Choi et al., 2011) and 3-fluorophenyl (Choi et al., 2012) substituents in 2-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.018 (2) Å from the least-squares plane defined by the nine constituent atoms. In the 2-fluorobenzene ring, the F atom is disordered over two positions with site-occupancy factors, from refinement, of 0.961 (3) (part A) and 0.039 (3) (part B). The cyclohexyl ring has the chair form. The dihedral angle formed by the 2-fluorobenzene ring and the mean plane of the benzofuran fragment is 38.68 (6)°. In the crystal structure (Fig. 2), molecules are linked by pairs of C—H···O hydrogen bonds into centrosymmetric dimers, which are further packed into stacks along the c axis by C—H···O hydrogen bonds (Table 1). In addition, the crystal packing (Fig. 2) exhibits a sulfinyl–sulfinyl interaction (Choi et al., 2008) similar to a type-II carbonyl-carbonyl interaction (Allen et al., 1998), with a S1···O2ii distance of 3.1733 (13) Å (symmetry operation ii: 1/2-x, 1/2-y, 1-z).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2011, 2012). For details of sulfinyl–sulfinyl interactions, see: Choi et al. (2008). For a review of carbonyl–carbonyl interactions, see: Allen et al. (1998).

Experimental top

3-Chloroperoxybenzoic acid (77%, 208 mg, 0.9 mmol) was added in small portions to a stirred solution of 5-cyclohexyl-2-(2-fluorophenyl)-3-methylsulfanyl-1-benzofuran (271 mg, 0.8 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 5 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 78%, M.pt: 452–453 K; Rf = 0.59 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aryl, methine and methylene, and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally. The F1 atom of the 2-fluorophenyl ring is disordered over two positions with site occupancy factors, from refinement, of 0.961 (3) (part A) and 0.039 (3) (part B). For the proper treatment of H-atoms, carbon atoms C16 and C20 were divided in two parts with equalized coordinates and thermal parameters. The distance of equivalent C—F pairs were restrained to 1.330 (5) Å using command DFIX, and displacement ellipsoids of F1 set were restrained to 0.01 using command ISOR.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The F atom of the 2-fluorophenyl ring is disordered over two positions with site occupancy factors, from refinement of 0.961 (3) (part A) and 0.039 (3) (part B).
[Figure 2] Fig. 2. A view of the C—H···O and S···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding and disordered part B atoms were omitted for clarity. [Symmetry codes: (i) xX, - y + 1, z - 1/2; (ii) - x + 1/2, - y + 1/2, - z + 1; (iii) x, - y + 1, z + 1/2 .]
5-Cyclohexyl-2-(2-fluorophenyl)-3-methylsulfinyl-1-benzofuran top
Crystal data top
C21H21FO2SF(000) = 1504
Mr = 356.44Dx = 1.331 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7608 reflections
a = 33.0231 (12) Åθ = 2.4–27.9°
b = 5.6347 (2) ŵ = 0.20 mm1
c = 19.2200 (6) ÅT = 173 K
β = 95.855 (2)°Block, colourless
V = 3557.7 (2) Å30.31 × 0.15 × 0.09 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
4455 independent reflections
Radiation source: rotating anode3455 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.066
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.1°
φ and ω scansh = 4442
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 57
Tmin = 0.545, Tmax = 0.746l = 2525
29435 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.122H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0503P)2 + 2.7846P]
where P = (Fo2 + 2Fc2)/3
4455 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.36 e Å3
14 restraintsΔρmin = 0.33 e Å3
Crystal data top
C21H21FO2SV = 3557.7 (2) Å3
Mr = 356.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.0231 (12) ŵ = 0.20 mm1
b = 5.6347 (2) ÅT = 173 K
c = 19.2200 (6) Å0.31 × 0.15 × 0.09 mm
β = 95.855 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4455 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3455 reflections with I > 2σ(I)
Tmin = 0.545, Tmax = 0.746Rint = 0.066
29435 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.122Δρmax = 0.36 e Å3
S = 1.07Δρmin = 0.33 e Å3
4455 reflectionsAbsolute structure: ?
237 parametersFlack parameter: ?
14 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.206366 (12)0.27237 (7)0.42614 (2)0.02355 (12)
O10.11688 (4)0.5340 (3)0.29615 (6)0.0347 (3)
O20.21653 (4)0.4453 (2)0.48408 (6)0.0320 (3)
C10.16017 (5)0.3784 (3)0.38215 (8)0.0233 (3)
C20.12801 (5)0.4947 (3)0.41447 (9)0.0251 (4)
C30.11880 (5)0.5338 (3)0.48284 (9)0.0271 (4)
H30.13560.46870.52120.033*
C40.08520 (6)0.6673 (4)0.49437 (9)0.0340 (4)
C50.06078 (7)0.7595 (4)0.43703 (11)0.0494 (6)
H50.03770.85190.44540.059*
C60.06884 (7)0.7218 (4)0.36850 (11)0.0497 (6)
H60.05190.78490.33000.060*
C70.10277 (5)0.5879 (4)0.35935 (9)0.0330 (4)
C80.15236 (5)0.4084 (3)0.31233 (8)0.0252 (4)
C90.07601 (6)0.7166 (4)0.56872 (10)0.0358 (4)
H90.09310.60470.59960.043*
C100.03215 (7)0.6704 (5)0.58103 (12)0.0508 (6)
H10A0.02510.50410.56850.061*
H10B0.01410.77550.55040.061*
C110.02494 (8)0.7145 (5)0.65731 (13)0.0620 (8)
H11A0.00420.69060.66310.074*
H11B0.04090.59900.68770.074*
C120.03733 (7)0.9641 (5)0.67931 (12)0.0505 (6)
H12A0.01941.07920.65220.061*
H12B0.03380.98580.72950.061*
C130.08082 (7)1.0129 (5)0.66758 (11)0.0504 (6)
H13A0.09900.91090.69900.061*
H13B0.08741.18040.67940.061*
C140.08855 (7)0.9658 (4)0.59173 (11)0.0465 (5)
H14A0.07311.08220.56090.056*
H14B0.11790.98810.58680.056*
C150.17462 (5)0.3439 (3)0.25303 (8)0.0263 (4)
C16A0.19517 (6)0.1306 (3)0.25044 (9)0.0301 (4)0.961 (3)
F1A0.19125 (4)0.0328 (2)0.30066 (6)0.0405 (4)0.961 (3)
C16B0.19517 (6)0.1306 (3)0.25044 (9)0.0301 (4)0.04
H16B0.19300.01810.28670.036*0.039 (3)
C170.21859 (6)0.0748 (4)0.19744 (10)0.0370 (5)
H170.23290.07140.19790.044*
C180.22086 (6)0.2346 (4)0.14361 (10)0.0383 (5)
H180.23710.19920.10680.046*
C190.19974 (6)0.4449 (4)0.14305 (9)0.0374 (5)
H190.20100.55300.10540.045*
C20A0.17669 (6)0.4997 (4)0.19703 (9)0.0317 (4)0.961 (3)
H20A0.16210.64520.19600.038*0.961 (3)
C20B0.17669 (6)0.4997 (4)0.19703 (9)0.0317 (4)0.04
F1B0.1515 (6)0.680 (3)0.1832 (13)0.031 (7)0.039 (3)
C210.18645 (6)0.0135 (3)0.46404 (10)0.0360 (4)
H21A0.20840.06960.49230.054*
H21B0.17460.09180.42680.054*
H21C0.16540.05990.49380.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0256 (2)0.0259 (2)0.0196 (2)0.00267 (16)0.00441 (15)0.00009 (16)
O10.0323 (7)0.0526 (8)0.0196 (6)0.0133 (6)0.0049 (5)0.0022 (6)
O20.0346 (7)0.0348 (7)0.0257 (6)0.0027 (5)0.0020 (5)0.0065 (5)
C10.0271 (8)0.0246 (8)0.0186 (8)0.0012 (7)0.0045 (6)0.0007 (6)
C20.0257 (8)0.0292 (9)0.0209 (8)0.0016 (7)0.0054 (6)0.0005 (7)
C30.0263 (8)0.0339 (9)0.0215 (8)0.0018 (7)0.0046 (7)0.0008 (7)
C40.0352 (10)0.0427 (11)0.0254 (9)0.0066 (8)0.0096 (8)0.0003 (8)
C50.0427 (12)0.0707 (16)0.0366 (11)0.0285 (11)0.0126 (9)0.0036 (11)
C60.0448 (12)0.0762 (16)0.0283 (10)0.0309 (11)0.0047 (9)0.0060 (10)
C70.0325 (10)0.0469 (11)0.0203 (9)0.0098 (8)0.0063 (7)0.0005 (8)
C80.0259 (8)0.0285 (9)0.0214 (8)0.0027 (7)0.0033 (6)0.0007 (7)
C90.0378 (10)0.0461 (11)0.0253 (9)0.0097 (9)0.0110 (8)0.0015 (8)
C100.0497 (13)0.0640 (15)0.0423 (12)0.0144 (11)0.0225 (10)0.0213 (11)
C110.0598 (15)0.0855 (19)0.0462 (13)0.0247 (14)0.0324 (12)0.0241 (13)
C120.0426 (12)0.0723 (16)0.0386 (12)0.0047 (11)0.0134 (10)0.0210 (11)
C130.0461 (12)0.0668 (16)0.0399 (12)0.0060 (11)0.0113 (10)0.0195 (11)
C140.0444 (12)0.0585 (14)0.0390 (12)0.0084 (10)0.0163 (9)0.0109 (10)
C150.0283 (9)0.0329 (9)0.0180 (8)0.0016 (7)0.0037 (6)0.0032 (7)
C16A0.0364 (10)0.0315 (10)0.0227 (9)0.0017 (8)0.0044 (7)0.0041 (7)
F1A0.0590 (8)0.0315 (6)0.0326 (7)0.0058 (5)0.0117 (5)0.0008 (5)
C16B0.0364 (10)0.0315 (10)0.0227 (9)0.0017 (8)0.0044 (7)0.0041 (7)
C170.0361 (10)0.0422 (11)0.0336 (10)0.0015 (8)0.0071 (8)0.0124 (9)
C180.0362 (10)0.0545 (13)0.0255 (9)0.0047 (9)0.0096 (8)0.0142 (9)
C190.0396 (11)0.0545 (13)0.0187 (9)0.0068 (9)0.0059 (8)0.0012 (8)
C20A0.0335 (10)0.0391 (11)0.0223 (9)0.0002 (8)0.0025 (7)0.0007 (8)
C20B0.0335 (10)0.0391 (11)0.0223 (9)0.0002 (8)0.0025 (7)0.0007 (8)
F1B0.030 (10)0.036 (11)0.028 (10)0.002 (8)0.006 (7)0.000 (8)
C210.0427 (11)0.0311 (10)0.0350 (10)0.0002 (8)0.0070 (9)0.0103 (8)
Geometric parameters (Å, º) top
S1—O21.4921 (13)C11—C121.513 (3)
S1—C11.7708 (17)C11—H11A0.9900
S1—C211.7856 (19)C11—H11B0.9900
S1—O2i3.1733 (13)C12—C131.502 (3)
O1—C81.377 (2)C12—H12A0.9900
O1—C71.379 (2)C12—H12B0.9900
C1—C81.351 (2)C13—C141.529 (3)
C1—C21.442 (2)C13—H13A0.9900
C2—C71.383 (2)C13—H13B0.9900
C2—C31.396 (2)C14—H14A0.9900
C3—C41.377 (2)C14—H14B0.9900
C3—H30.9500C15—C16A1.384 (3)
C4—C51.398 (3)C15—C20A1.396 (2)
C4—C91.516 (2)C16A—F1A1.3495 (19)
C5—C61.387 (3)C16A—C171.377 (2)
C5—H50.9500C17—C181.380 (3)
C6—C71.377 (3)C17—H170.9500
C6—H60.9500C18—C191.374 (3)
C8—C151.464 (2)C18—H180.9500
C9—C101.514 (3)C19—C20A1.383 (3)
C9—C141.517 (3)C19—H190.9500
C9—H91.0000C20A—H20A0.9500
C10—C111.529 (3)C21—H21A0.9800
C10—H10A0.9900C21—H21B0.9800
C10—H10B0.9900C21—H21C0.9800
O2—S1—C1104.66 (7)C12—C11—H11B109.5
O2—S1—C21107.05 (9)C10—C11—H11B109.5
C1—S1—C2197.77 (9)H11A—C11—H11B108.1
O2—S1—O2i74.92 (6)C13—C12—C11111.33 (19)
C1—S1—O2i173.96 (6)C13—C12—H12A109.4
C21—S1—O2i76.76 (7)C11—C12—H12A109.4
C8—O1—C7105.70 (13)C13—C12—H12B109.4
C8—C1—C2107.27 (15)C11—C12—H12B109.4
C8—C1—S1125.75 (13)H12A—C12—H12B108.0
C2—C1—S1125.75 (12)C12—C13—C14111.50 (18)
C7—C2—C3119.27 (15)C12—C13—H13A109.3
C7—C2—C1104.79 (14)C14—C13—H13A109.3
C3—C2—C1135.90 (16)C12—C13—H13B109.3
C4—C3—C2119.62 (16)C14—C13—H13B109.3
C4—C3—H3120.2H13A—C13—H13B108.0
C2—C3—H3120.2C9—C14—C13111.81 (19)
C3—C4—C5119.06 (17)C9—C14—H14A109.3
C3—C4—C9119.58 (17)C13—C14—H14A109.3
C5—C4—C9121.34 (17)C9—C14—H14B109.3
C6—C5—C4122.73 (18)C13—C14—H14B109.3
C6—C5—H5118.6H14A—C14—H14B107.9
C4—C5—H5118.6C16A—C15—C20A117.12 (15)
C7—C6—C5116.29 (19)C16A—C15—C8122.04 (16)
C7—C6—H6121.9C20A—C15—C8120.82 (16)
C5—C6—H6121.9F1A—C16A—C17118.39 (17)
C6—C7—O1125.86 (17)F1A—C16A—C15118.93 (15)
C6—C7—C2123.02 (17)C17—C16A—C15122.65 (17)
O1—C7—C2111.09 (15)C16A—C17—C18118.91 (19)
C1—C8—O1111.12 (14)C16A—C17—H17120.5
C1—C8—C15133.03 (16)C18—C17—H17120.5
O1—C8—C15115.78 (14)C19—C18—C17120.16 (17)
C10—C9—C4113.72 (17)C19—C18—H18119.9
C10—C9—C14110.52 (17)C17—C18—H18119.9
C4—C9—C14111.67 (17)C18—C19—C20A120.30 (18)
C10—C9—H9106.8C18—C19—H19119.8
C4—C9—H9106.8C20A—C19—H19119.8
C14—C9—H9106.8C19—C20A—C15120.78 (18)
C9—C10—C11111.53 (18)C19—C20A—H20A119.6
C9—C10—H10A109.3C15—C20A—H20A119.6
C11—C10—H10A109.3S1—C21—H21A109.5
C9—C10—H10B109.3S1—C21—H21B109.5
C11—C10—H10B109.3H21A—C21—H21B109.5
H10A—C10—H10B108.0S1—C21—H21C109.5
C12—C11—C10110.8 (2)H21A—C21—H21C109.5
C12—C11—H11A109.5H21B—C21—H21C109.5
C10—C11—H11A109.5
O2—S1—C1—C8131.23 (16)C7—O1—C8—C15176.16 (16)
C21—S1—C1—C8118.80 (17)C3—C4—C9—C10132.0 (2)
O2—S1—C1—C234.53 (17)C5—C4—C9—C1049.6 (3)
C21—S1—C1—C275.45 (16)C3—C4—C9—C14102.1 (2)
C8—C1—C2—C70.1 (2)C5—C4—C9—C1476.3 (3)
S1—C1—C2—C7167.87 (14)C4—C9—C10—C11178.0 (2)
C8—C1—C2—C3178.0 (2)C14—C9—C10—C1155.5 (3)
S1—C1—C2—C310.0 (3)C9—C10—C11—C1256.3 (3)
C7—C2—C3—C41.0 (3)C10—C11—C12—C1355.9 (3)
C1—C2—C3—C4176.7 (2)C11—C12—C13—C1455.2 (3)
C2—C3—C4—C50.5 (3)C10—C9—C14—C1354.5 (3)
C2—C3—C4—C9177.98 (17)C4—C9—C14—C13177.83 (17)
C3—C4—C5—C60.2 (4)C12—C13—C14—C954.7 (3)
C9—C4—C5—C6178.6 (2)C1—C8—C15—C16A39.3 (3)
C4—C5—C6—C70.3 (4)O1—C8—C15—C16A143.89 (17)
C5—C6—C7—O1178.3 (2)C1—C8—C15—C20A139.2 (2)
C5—C6—C7—C20.2 (4)O1—C8—C15—C20A37.6 (2)
C8—O1—C7—C6176.9 (2)C20A—C15—C16A—F1A174.72 (16)
C8—O1—C7—C21.4 (2)C8—C15—C16A—F1A6.7 (3)
C3—C2—C7—C60.9 (3)C20A—C15—C16A—C173.3 (3)
C1—C2—C7—C6177.5 (2)C8—C15—C16A—C17175.27 (17)
C3—C2—C7—O1179.23 (16)F1A—C16A—C17—C18176.19 (17)
C1—C2—C7—O10.9 (2)C15—C16A—C17—C181.9 (3)
C2—C1—C8—O10.8 (2)C16A—C17—C18—C190.5 (3)
S1—C1—C8—O1168.73 (13)C17—C18—C19—C20A1.2 (3)
C2—C1—C8—C15176.11 (19)C18—C19—C20A—C150.4 (3)
S1—C1—C8—C158.2 (3)C16A—C15—C20A—C192.5 (3)
C7—O1—C8—C11.3 (2)C8—C15—C20A—C19176.08 (17)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O2ii0.952.443.220 (2)140
C21—H21A···O2i0.982.573.265 (2)128
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O2i0.952.443.220 (2)140
C21—H21A···O2ii0.982.573.265 (2)128
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+1/2, z+1.
Acknowledgements top

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

references
References top

Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o944.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1061.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o470.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.