[Journal logo]

Volume 69 
Part 6 
Page i36  
June 2013  

Received 10 April 2013
Accepted 3 May 2013
Online 18 May 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](Te-O) = 0.007 Å
Disorder in main residue
R = 0.042
wR = 0.064
Data-to-parameter ratio = 30.9
Details
Open access

The low-symmetry lanthanum(III) oxotellurate(IV), La10Te12O39

aDepartment of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
Correspondence e-mail: mozhar@mcmaster.ca

Single crystals of decalanthanum(III) dodecaoxotellurate(IV), La10Te12O39, were obtained by reacting La2O3 and TeO2 in a CsCl flux. Its crystal structure can be viewed as a three-dimensional network of corner- and edge-sharing LaO8 polyhedra with TeIV atoms filling the interstitial sites. The TeIV atoms with their 5s2 electron lone pairs distort the LaO8 polyhedra through variable Te-O bonds. Among the six unique Te sites, four of them define empty channels extending parallel to the a axis. The formation of these channels is a result of the stereochemically active electron lone pairs on the TeIV atoms. The atomic arrangement of the Te-O units can be understood on the basis of the valence shell electron pair repulsion (VSEPR) model. A certain degree of disorder is observed in the crystal structure. As a result, one of the five different La sites is split into two positions with an occupancy ratio of 0.875 (2):0.125 (2). Also, one of the oxygen sites is split into two positions in a 0.559 (13):0.441 (13) ratio, and one O site is half-occupied. Such disorder was observed in all measured La10Te12O39 crystals.

Related literature

For the structures of related rare-earth oxotellurates(IV), see: Castro et al. (1990[Castro, A., Enjalbert, R., Lloyd, D., Rasines, I. & Galy, J. (1990). J. Solid State Chem. 85, 100-107.]); Weber et al. (2001[Weber, F. A., Meier, S. F. & Schleid, T. (2001). Z. Anorg. Allg. Chem. 627, 2225-2231.]); Meier et al. (2009[Meier, S. F., Höss, P. & Schleid, T. (2009). Z. Anorg. Allg. Chem. 635, 768-775.]). For synthetic details, see: Weber & Schleid (2000[Weber, F. A. & Schleid, T. (2000). Z. Anorg. Allg. Chem. 626, 1285-1287.]). For standardization of structural data, see: Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]). For the VSEPR model, see: Gillespie (1970[Gillespie, R. J. (1970). J. Chem. Educ. 47, 18-23.]). For the bond-valence method, see: Brown (2009[Brown, I. D. (2009). Chem. Rev. 109, 6858-6919.]).

Experimental

Crystal data
  • La10Te12O39

  • Mr = 3544.30

  • Triclinic, [P \overline 1]

  • a = 5.6856 (11) Å

  • b = 12.621 (3) Å

  • c = 14.402 (3) Å

  • [alpha] = 95.53 (3)°

  • [beta] = 100.88 (3)°

  • [gamma] = 93.13 (3)°

  • V = 1007.3 (3) Å3

  • Z = 1

  • Mo K[alpha] radiation

  • [mu] = 18.98 mm-1

  • T = 293 K

  • 0.12 × 0.04 × 0.02 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe, 2004[Stoe (2004). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.256, Tmax = 0.702

  • 18743 measured reflections

  • 8922 independent reflections

  • 5110 reflections with I > 2[sigma](I)

  • Rint = 0.063

Refinement
  • R[F2 > 2[sigma](F2)] = 0.042

  • wR(F2) = 0.064

  • S = 0.77

  • 8922 reflections

  • 289 parameters

  • [Delta][rho]max = 3.71 e Å-3

  • [Delta][rho]min = -3.98 e Å-3

Data collection: X-AREA (Stoe, 2004[Stoe (2004). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe, 2004[Stoe (2004). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2008[Crystal Impact (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2737 ).


Acknowledgements

This work was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada and by a grant from the ACS Petroleum Research Fund.

References

Brown, I. D. (2009). Chem. Rev. 109, 6858-6919.  [ISI] [CrossRef] [PubMed] [ChemPort]
Castro, A., Enjalbert, R., Lloyd, D., Rasines, I. & Galy, J. (1990). J. Solid State Chem. 85, 100-107.  [CrossRef] [ChemPort] [ISI]
Crystal Impact (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.  [CrossRef] [ISI] [details]
Gillespie, R. J. (1970). J. Chem. Educ. 47, 18-23.  [ChemPort]
Meier, S. F., Höss, P. & Schleid, T. (2009). Z. Anorg. Allg. Chem. 635, 768-775.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Stoe (2004). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.
Weber, F. A., Meier, S. F. & Schleid, T. (2001). Z. Anorg. Allg. Chem. 627, 2225-2231.  [CrossRef] [ChemPort]
Weber, F. A. & Schleid, T. (2000). Z. Anorg. Allg. Chem. 626, 1285-1287.  [CrossRef] [ChemPort]


Acta Cryst (2013). E69, i36  [ doi:10.1107/S1600536813012191 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.