Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

# Bis(1,4-diazoniabicyclo[2.2.2]octane) di- $\mu$-chlorido-bis[tetrachloridoantimonate(III)] dihydrate 

## Tarek Ben Rhaiem, Habib Boughzala* and Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia<br>Correspondence e-mail: habib.boughzala@ipein.rnu.tn

Received 29 April 2013; accepted 13 May 2013
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; H atom completeness $88 \% ; R$ factor $=0.023 ; w R$ factor $=0.061$; data-to-parameter ratio $=20.7$.

The title salt, $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Sb}_{2} \mathrm{Cl}_{10}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, was obtained by slow evaporation of an acidic solution of 1,4-diazabicyclo[2.2.2]octane and $\mathrm{SbCl}_{3}$. The crystal structure consists of $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)^{2+}$ cations, $\left[\mathrm{Sb}_{2} \mathrm{Cl}_{10}\right]^{4-}$ double octahedra and lattice water molecules. All molecular components are situated on special positions. The cation and the lattice water molecule exhibit mirror symmetry, whereas the anion has site symmetry $2 / m$. The cations, anions and water molecules are alternately arranged into columns along [010]. Individual columns are joined into layers extending along (001). Intralayer $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and interlayer $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen-bonding interactions lead to the formation of a three-dimensional network.

## Related literature

For background to this class of compounds, see: Pietraszko et al. (2001); Feng et al. (2007); Bujak \& Zaleski (1999); Knodler et al. (1988); Baker \& Williams (1978). For a related structure, see: Qu \& Sun (2005).


## Experimental

> Crystal data $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Sb}_{2} \mathrm{Cl}_{10}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad M_{r}=862.46$

Orthorhombic, Pnnm
$a=9.162$ (1) £
$Z=2$
$b=20.869$ (7) $\AA$
Mo $K \alpha$ radiation
$c=7.566(2) \AA$
$V=1446.8(7) \AA^{3}$
$\mu=2.81 \mathrm{~mm}^{-1}$
$0.50 \times 0.43 \times 0.36 \mathrm{~mm}$
Data collection
Enraf-Nonius CAD-4 diffractometer
Absorption correction: $\psi$ scan (North et al., 1968)
$T_{\text {min }}=0.334, T_{\text {max }}=0.431$
2797 measured reflections

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023 \quad 82$ parameters
$w R\left(F^{2}\right)=0.061$
$S=1.08$
1700 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 2$ | 0.91 | 2.59 | $3.340(4)$ | 140 |
| $\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 3$ | 0.91 | 2.77 | $3.390(3)$ | 126 |
| $\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 3^{\mathrm{i}}$ | 0.91 | 2.77 | $3.390(3)$ | 126 |
| $\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}$ | 0.91 | 2.00 | $2.780(4)$ | 143 |

Symmetry code: (i) $x, y,-z+1$.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2740).

## References

Baker, W. A. \& Williams, D. E. (1978). Acta Cryst. B34, 1111-1116.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bujak, M. \& Zaleski, J. (1999). Acta Cryst. C55, 1775-1778.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Feng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. \& Jin, Z.-M. (2007). Acta Cryst. E63, m1786-m1787.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Knodler, R., Ensinger, U., Schwarz, W. \& Schmidt, A. (1988). Z. Anorg. Allg. Chem. 557, 208-218.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pietraszko, A., Bednarska-Bolek, B., Jakubas, R. \& Zielinski, P. (2001). J. Phys. Condens. Matter, 13, 6471-6488.
Qu, Y. \& Sun, X.-M. (2005). Acta Cryst. E61, m2121-m2123.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

## supporting information

Acta Cryst. (2013). E69, m330 [doi:10.1107/S160053681301307X]

## Bis(1,4-diazoniabicyclo[2.2.2]octane) di- $\mu$-chlorido-bis[tetrachloridoantimonate(III)] dihydrate

## Tarek Ben Rhaiem, Habib Boughzala and Ahmed Driss

## S1. Comment

Halogenidoantimonates(III) and halogenidobismuthates(III) with organic cations defined by the general formula $R_{\mathrm{a}} M_{\mathrm{b}} X_{3 \mathrm{~b}+\mathrm{a}}$ (where $R$ is an organic cation; $M$ is $\mathrm{Sb}^{\text {III }}$ or/and $\mathrm{Bi}^{\text {iII }}$ and $X$ is $\mathrm{Cl}, \mathrm{Br}$ or/and I) are an interesting group of compounds due to their ferroelectric properties (Pietraszko et al., 2001). Halogenidoantimonates(III) constitute a group of salts in which a number of compounds have a similar structural arrangement (Feng et al., 2007; Bujak \& Zaleski, 1999; Knodler et al., 1988; Baker \& Williams, 1978). Recently, the new chloridoantimonate(III), $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Sb}_{2} \mathrm{Cl}_{10}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, has been synthesized in our laboratory. The synthesis and the structure determination are presented here.

The crystal structure of the title compound is formed by an alterning packing of layers along [001] (Fig. 1). Each layer spreads parallel to (001) and is located at $x=0$ and $x=0.5$ and consists of columns extending along [010] of alternating cations, anions and water molecules (Fig. 2).
The $\left[\mathrm{Sb}_{2} \mathrm{Cl}_{10}\right]^{4-}$ anion has site symmetry $2 / m$ and is composed of two distorted, edge-sharing $\mathrm{SbCl}_{6}$ octahedra. The cis $\mathrm{Sb}-\mathrm{Cl}-\mathrm{Sb}$ angles vary from 81.11 (2) to $104.42(1)^{\circ}$, whereas the trans angles are between 164.64 (4) and 173.84 (1) . The longest $\mathrm{Sb} 1-\mathrm{Cl} 4$ bond length $(2.9107$ (8) $\AA$ ) corresponds to the bridging chlorine atom while the shortest one, $\mathrm{Sb} 1-$ Cl 3 (2.4904 (7) $\AA$ ) is terminal and located in opposite direction to the bridging one (Fig. 2). The anionic charge is balanced by organic $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)^{2+}(\mathrm{DABCO})$ cations that exhibit mirror symmetry. Bond lengths and angles in the $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)^{2+}$ cation are within normal ranges and are comparable with those observed in a related structure (Qu \& Sun, 2005).

The cohesion of the layers is ensured by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds between organic cations, inorganic anions and the water molecules (Fig. 2, Table 1).

## S2. Experimental

A mixture of $\mathrm{SbCl}_{3}(0.23 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{DABCO}(0.11 \mathrm{~g}, 1 \mathrm{mmol})$ was dissolved in an aqueous solution of hydrochloric and stirred for several minutes at room temperature. Colorless crystals suitable for X-ray diffraction analysis were obtained by slow evaporation at room temperature over 2 weeks.

## S3. Refinement

Hydrogen positions of the water molecule could not be located reliably and were eventually omitted from refinement. The $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ hydrogen atom positions were placed geometrically. They were included in the refinement using the riding-model approximation, with distance constraints of $\mathrm{C}-\mathrm{H}=0.97 \AA, \mathrm{~N}-\mathrm{H}=0.91$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$.


## Figure 1

Three-dimensional view of $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Sb}_{2} \mathrm{Cl}_{10}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ showing the crystal packing. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.


## Figure 2

An ORTEP plot of the molecular entities of $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Sb}_{2} \mathrm{Cl}_{10}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, showing the atom numbering scheme.
Displacement ellipsoids are drawn at the $50 \%$ probability level and H atoms are shown as small spheres of arbitrary radius. [Symmetry code: (i) $x, y, 1-z$; (ii) $1-x, 1-y, z$; (iii) $1-x, 1-y, 1-z$.]

## Bis(1,4-diazoniabicyclo[2.2.2]octane) di- $\mu$-chlorido-bis[tetrachloridoantimonate(III)] dihydrate

## Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Sb}_{2} \mathrm{Cl}_{10}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=862.46$
Orthorhombic, Pnnm
Hall symbol: -P 2 2n
$a=9.162(1) \AA$
$b=20.869(7) \AA$
$c=7.566(2) \AA$
$V=1446.8(7) \AA^{3}$
$Z=2$
$F(000)=840$
$D_{\mathrm{x}}=1.980 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 571 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1700 reflections
$\theta=2.4-27.0^{\circ}$
$\mu=2.81 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prism, colourless
$0.50 \times 0.43 \times 0.36 \mathrm{~mm}$

## Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
non-profiled $\omega / 2 \theta$ scans
Absorption correction: $\psi$ scan
(North et al., 1968)
$T_{\text {min }}=0.334, T_{\text {max }}=0.431$
2797 measured reflections

> 1700 independent reflections
> 1488 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.029$
> $\theta_{\max }=27.0^{\circ}, \theta_{\min }=2.4^{\circ}$
> $h=-1 \rightarrow 11$
> $k=-26 \rightarrow 1$
> $l=-9 \rightarrow 3$
> 2 standard reflections every 120 min
> intensity decay: $1 \%$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.061$
$S=1.08$
1700 reflections
82 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0268 P)^{2}+1.1425 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.59$ e $\AA^{-3}$
$\Delta \rho_{\text {min }}=-0.37 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0099 (5)

## Special details

Experimental. Number of psi-scan sets used was 5 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\mathrm{iso}} * / U_{\mathrm{eq}}$ | Occ. $(<1)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Sb | $0.40193(3)$ | $0.407356(11)$ | 0.5000 | $0.03327(11)$ |  |
| $\mathrm{Cl1}$ | $0.16885(14)$ | $0.46510(7)$ | 0.5000 | $0.0678(4)$ |  |
| Cl 2 | $0.62462(11)$ | $0.31027(6)$ | 0.5000 | $0.0471(3)$ |  |
| Cl 3 | $0.30372(8)$ | $0.33776(3)$ | $0.26053(10)$ | $0.04669(19)$ |  |
| Cl 4 | 0.5000 | 0.5000 | $0.23812(14)$ | $0.0534(3)$ |  |
| N 1 | $0.3554(4)$ | $0.20234(16)$ | 0.5000 | $0.0406(8)$ |  |
| H 1 | 0.3861 | 0.2438 | 0.5000 | $0.049^{*}$ |  |
| N 2 | $0.2710(4)$ | $0.09024(15)$ | 0.5000 | $0.0443(8)$ |  |
| H 2 | 0.2394 | 0.0489 | 0.5000 | $0.053^{*}$ |  |
| C 1 | $0.1931(4)$ | $0.20125(18)$ | 0.5000 | $0.0433(9)$ | 0.50 |
| H 1 A | 0.1563 | 0.2231 | 0.3961 | $0.052^{*}$ | 0.50 |
| H 1 B | 0.1563 | 0.2231 | 0.6039 | $0.052^{*}$ |  |


|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C2 | $0.1428(5)$ | $0.1332(2)$ | 0.5000 | $0.0537(12)$ | 0.50 |
| H2A | 0.0836 | 0.1251 | 0.6039 | $0.064^{*}$ | 0.50 |
| H2B | 0.0836 | 0.1251 | 0.3961 | $0.064^{*}$ |  |
| C3 | $0.4100(3)$ | $0.17034(16)$ | $0.6617(5)$ | $0.0535(8)$ |  |
| H3A | 0.3730 | 0.1921 | 0.7657 | $0.064^{*}$ |  |
| H3B | 0.5158 | 0.1720 | 0.6646 | $0.0541(8)$ |  |
| C4 | $0.3595(4)$ | $0.10141(15)$ | $0.6615(5)$ | $0.065^{*}$ |  |
| H4A | 0.4432 | 0.0729 | 0.6626 | $0.065^{*}$ |  |
| H4B | 0.3013 | 0.0929 | 0.7660 | $0.0522(8)$ |  |
| O | $0.3071(4)$ | $-0.04203(13)$ | 0.5000 |  |  |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sb | $0.03290(16)$ | $0.02973(15)$ | $0.03718(16)$ | $-0.00263(10)$ | 0.000 | 0.000 |
| C 11 | $0.0468(6)$ | $0.0716(8)$ | $0.0850(9)$ | $0.0239(6)$ | 0.000 | 0.000 |
| C 2 | $0.0379(5)$ | $0.0543(6)$ | $0.0492(6)$ | $0.0080(4)$ | 0.000 | 0.000 |
| C 13 | $0.0517(4)$ | $0.0401(4)$ | $0.0483(4)$ | $-0.0104(3)$ | $-0.0131(3)$ | $0.0003(3)$ |
| C 14 | $0.0639(7)$ | $0.0548(6)$ | $0.0414(5)$ | $0.0027(5)$ | 0.000 | 0.000 |
| N 1 | $0.0392(17)$ | $0.0292(15)$ | $0.053(2)$ | $-0.0064(13)$ | 0.000 | 0.000 |
| N 2 | $0.050(2)$ | $0.0268(15)$ | $0.056(2)$ | $0.0011(14)$ | 0.000 | 0.000 |
| C 1 | $0.036(2)$ | $0.0315(18)$ | $0.062(3)$ | $0.0061(16)$ | 0.000 | 0.000 |
| C 2 | $0.0314(19)$ | $0.039(2)$ | $0.091(4)$ | $-0.0053(18)$ | 0.000 | 0.000 |
| C 3 | $0.0447(16)$ | $0.0601(19)$ | $0.0557(19)$ | $-0.0037(14)$ | $-0.0143(15)$ | $-0.0024(16)$ |
| C 4 | $0.0640(19)$ | $0.0475(16)$ | $0.0508(18)$ | $0.0084(14)$ | $-0.0059(17)$ | $0.0100(15)$ |
| O | $0.0487(17)$ | $0.0359(15)$ | $0.072(2)$ | $-0.0019(13)$ | 0.000 | 0.000 |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| $\mathrm{Sb}-\mathrm{Cl1}$ | 2.4520 (12) | N2-H2 | 0.9100 |
| :---: | :---: | :---: | :---: |
| $\mathrm{Sb}-\mathrm{Cl3}^{\text {i }}$ | 2.4904 (7) | $\mathrm{C} 1-\mathrm{C} 2$ | 1.492 (6) |
| $\mathrm{Sb}-\mathrm{Cl} 3$ | 2.4904 (7) | C1-H1A | 0.9700 |
| $\mathrm{Sb}-\mathrm{Cl} 2$ | 2.8755 (11) | C1-H1B | 0.9700 |
| $\mathrm{Sb}-\mathrm{Cl} 4$ | 2.9107 (8) | $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 0.9700 |
| N1-C3 | 1.481 (4) | C2-H2B | 0.9700 |
| N1-C3 ${ }^{\text {i }}$ | 1.481 (4) | C3-C4 | 1.511 (4) |
| N1-C1 | 1.487 (5) | C3-H3A | 0.9700 |
| N1-H1 | 0.9100 | С3-H3B | 0.9700 |
| N2-C2 | 1.478 (5) | $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 0.9700 |
| $\mathrm{N} 2-\mathrm{C} 4^{\mathrm{i}}$ | 1.485 (4) | C4-H4B | 0.9700 |
| N2-C4 | 1.485 (4) |  |  |
| $\mathrm{Cl1}-\mathrm{Sb}-\mathrm{Cl3}^{\text {i }}$ | 88.39 (3) | N1-C1-H1A | 109.9 |
| $\mathrm{Cl1}-\mathrm{Sb}-\mathrm{Cl} 3$ | 88.39 (3) | $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 109.9 |
| $\mathrm{Cl3}-\mathrm{Sb}-\mathrm{Cl} 3$ | 93.37 (3) | N1-C1-H1B | 109.9 |
| $\mathrm{Cl} 1-\mathrm{Sb}-\mathrm{Cl} 2$ | 164.64 (4) | $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 109.9 |
| $\mathrm{Cl} 3{ }^{\text {i }}-\mathrm{Sb}-\mathrm{Cl} 2$ | 81.11 (2) | $\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 108.3 |
| $\mathrm{Cl} 3-\mathrm{Sb}-\mathrm{Cl} 2$ | 81.11 (2) | $\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$ | 109.4 (3) |


| $\mathrm{C} 14-\mathrm{Sb}-\mathrm{Cl} 3$ | $90.19(1)$ |
| :--- | :--- |
| $\mathrm{C} 14-\mathrm{Sb}-\mathrm{Cl} 3^{\mathrm{i}}$ | $173.84(1)$ |
| $\mathrm{C} 14-\mathrm{Sb}-\mathrm{Cl1}$ | $86.69(4)$ |
| $\mathrm{Cl} 4-\mathrm{Sb}-\mathrm{Cl} 2$ | $104.42(1)$ |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 3^{\mathrm{i}}$ | $111.4(3)$ |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$ | $109.3(2)$ |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$ | $109.3(2)$ |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1$ | 108.9 |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1$ | 108.9 |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$ | 108.9 |
| $\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 4^{\mathrm{i}}$ | $109.8(2)$ |
| $\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 4$ | $109.8(2)$ |
| $\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 4$ | $110.8(4)$ |
| $\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2$ | 108.8 |
| $\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2$ | 108.8 |
| $\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2$ | 108.8 |
| $\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$ | $108.9(3)$ |


| $\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 109.8 |
| :--- | :--- |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 109.8 |
| $\mathrm{~N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 109.8 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 109.8 |
| $\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 108.2 |
| $\mathrm{~N} 1-\mathrm{C} 3-\mathrm{C} 4$ | $109.0(3)$ |
| $\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 109.9 |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 109.9 |
| $\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$ | 109.9 |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$ | 109.9 |
| $\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$ | 108.3 |
| $\mathrm{~N} 2-\mathrm{C} 4-\mathrm{C} 3$ | $108.5(3)$ |
| $\mathrm{N} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 110.0 |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 110.0 |
| $\mathrm{~N} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$ | 110.0 |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$ | 110.0 |
| $\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$ | 108.4 |

Symmetry code: (i) $x, y,-z+1$.

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl2}$ | 0.91 | 2.59 | $3.340(4)$ | 140 |
| $\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl3}$ | 0.91 | 2.77 | $3.390(3)$ | 126 |
| $\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl3}$ |  |  |  |  |
| $\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{O}$ | 0.91 | 2.77 | $3.390(3)$ | 126 |

Symmetry code: (i) $x, y,-z+1$.

