[Journal logo]

Volume 69 
Part 6 
Page m330  
June 2013  

Received 29 April 2013
Accepted 13 May 2013
Online 18 May 2013

Key indicators
Single-crystal X-ray study
T = 298 K
Mean [sigma](C-C) = 0.005 Å
H completeness 88%
R = 0.023
wR = 0.061
Data-to-parameter ratio = 20.7
Details
Open access

Bis(1,4-diazoniabicyclo[2.2.2]octane) di-[mu]-chlorido-bis[tetrachloridoantimonate(III)] dihydrate

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia
Correspondence e-mail: habib.boughzala@ipein.rnu.tn

The title salt, (C6H14N2)2[Sb2Cl10]·2H2O, was obtained by slow evaporation of an acidic solution of 1,4-diazabicyclo[2.2.2]octane and SbCl3. The crystal structure consists of (C6H14N2)2+ cations, [Sb2Cl10]4- double octahedra and lattice water molecules. All molecular components are situated on special positions. The cation and the lattice water molecule exhibit mirror symmetry, whereas the anion has site symmetry 2/m. The cations, anions and water molecules are alternately arranged into columns along [010]. Individual columns are joined into layers extending along (001). Intralayer N-H...O and interlayer N-H...Cl hydrogen-bonding interactions lead to the formation of a three-dimensional network.

Related literature

For background to this class of compounds, see: Pietraszko et al. (2001[Pietraszko, A., Bednarska-Bolek, B., Jakubas, R. & Zielinski, P. (2001). J. Phys. Condens. Matter, 13, 6471-6488.]); Feng et al. (2007[Feng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786-m1787.]); Bujak & Zaleski (1999[Bujak, M. & Zaleski, J. (1999). Acta Cryst. C55, 1775-1778.]); Knodler et al. (1988[Knodler, R., Ensinger, U., Schwarz, W. & Schmidt, A. (1988). Z. Anorg. Allg. Chem. 557, 208-218.]); Baker & Williams (1978[Baker, W. A. & Williams, D. E. (1978). Acta Cryst. B34, 1111-1116.]). For a related structure, see: Qu & Sun (2005[Qu, Y. & Sun, X.-M. (2005). Acta Cryst. E61, m2121-m2123.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H14N2)2[Sb2Cl10]·2H2O

  • Mr = 862.46

  • Orthorhombic, P n n m

  • a = 9.162 (1) Å

  • b = 20.869 (7) Å

  • c = 7.566 (2) Å

  • V = 1446.8 (7) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 2.81 mm-1

  • T = 298 K

  • 0.50 × 0.43 × 0.36 mm

Data collection
  • Enraf-Nonius CAD-4 diffractometer

  • Absorption correction: [psi] scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.334, Tmax = 0.431

  • 2797 measured reflections

  • 1700 independent reflections

  • 1488 reflections with I > 2[sigma](I)

  • Rint = 0.029

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2[sigma](F2)] = 0.023

  • wR(F2) = 0.061

  • S = 1.08

  • 1700 reflections

  • 82 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.59 e Å-3

  • [Delta][rho]min = -0.37 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1...Cl2 0.91 2.59 3.340 (4) 140
N1-H1...Cl3 0.91 2.77 3.390 (3) 126
N1-H1...Cl3i 0.91 2.77 3.390 (3) 126
N2-H2...O 0.91 2.00 2.780 (4) 143
Symmetry code: (i) x, y, -z+1.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2740 ).


References

Baker, W. A. & Williams, D. E. (1978). Acta Cryst. B34, 1111-1116.  [CrossRef] [details]
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bujak, M. & Zaleski, J. (1999). Acta Cryst. C55, 1775-1778.  [CSD] [CrossRef] [details]
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.  [CrossRef] [ChemPort] [ISI] [details]
Feng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786-m1787.  [CSD] [CrossRef] [ChemPort] [details]
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Knodler, R., Ensinger, U., Schwarz, W. & Schmidt, A. (1988). Z. Anorg. Allg. Chem. 557, 208-218.  [CrossRef]
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.  [CrossRef] [details]
Pietraszko, A., Bednarska-Bolek, B., Jakubas, R. & Zielinski, P. (2001). J. Phys. Condens. Matter, 13, 6471-6488.  [ISI] [CrossRef] [ChemPort]
Qu, Y. & Sun, X.-M. (2005). Acta Cryst. E61, m2121-m2123.  [CSD] [CrossRef] [ChemPort] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, m330  [ doi:10.1107/S160053681301307X ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.