supplementary materials


xu5697 scheme

Acta Cryst. (2013). E69, o860    [ doi:10.1107/S1600536813012087 ]

Ammonium 2-(3,4-dimethylbenzoyl)benzoate dihydrate

M.-H. Zhang, Y.-L. Yuan and J.-F. Kou

Abstract top

In the anion of the title compound, NH4+·C16H13O3-·2H2O, the benzene rings are twisted with respect to each other by 73.56 (10)°. In the crystal, extensive N-H...O and O-H...O hydrogen bonds link the cations, anions and lattice water molecules into a three dimensional supramolecular structure.

Comment top

Friedel-Crafts acylation provides a fundamentaland useful method for the synthesis of aromatic ketones, which are important intermediates for preparing fine chemicals in the field of pharmaceuticals, agrochemicals, and fragrances. Typically, these reactions are performed using acyl chloride (for acylation) in the presence of a little more than one equivalent of Lewis acids, such as anhydrous aluminium chloride, titanium chloride and iron chloride (Elofson et al. 1965; Boon et al. 1986; Yeung et al. 2002; Gopalakrishnan et al. 2005; Qiao et al. 2008; Gouda et al. 2010). Herein we report the synthesis and structure of the title compound with aluminium chloride.

The structure of the title compound is shown in Fig. 1, Fig. 2 and hydrogen-bond geometry is given in Table 1. The compound crystallizes in the triclinic space group p-1,and the crystallographic asymmetric unit consists of one crystallo graphically independent anion, one ammonium cation and two water molecules. As shown in Fig.2, the dihedral angle is 73.2 between benzene rings which are not coplane. An interesting part of the structure of title compound is the helical chains formed by the N—H···O and O—H···O. hydrogen-bonding interactions along c axis in this molecule (Table 1 & Fig.3). Two neighouring N atoms formed helical chain (O3—N1—O4W—O2 andO2-O4W—N1—O3) which bridge two carboxy O3 atoms formed two oppposite handed chains with the bond distances of N1···O3 2.823 (3) Å, N1···O4w 3.067 (3) Å, O4W···O2 2.808 (2) Å. Further connection of the helices via N—H···O5W hydrogen bond with the bond distance of 2.871 Å gives the three-dimensional structure.

Related literature top

For the synthesis of the title compound, see: Elofson et al. (1965). For related compounds, see: Boon et al. (1986); Yeung et al. (2002); Gopalakrishnan et al. (2005); Qiao et al. (2008); Gouda et al. (2010).

Experimental top

In a 250 ml dry three-necked round-bottom flask, aluminium chloride (34.8 g, 0.26 mol) was dissolved in dry dichloromethane (150 ml), ortho-xylene (11.2 g, 0.105 mol) was added and then phthalic anhydride portion-wise with formation of an orange liquid in ice bath for 3 h while stirring. The mixture was reacted for 10 h while elevating the temperature of the reactor up to 303 K with formation of a yellow precipitate, then cooled down to room temperature and poured over a mixture of ice (20 g) and concentrated hydrochloric acid (10 ml) with a large amount of gas generated by HCl (Elofson et al., 1965). The organic layer was separated and the aqueous layer was extracted with dichloromethane (3 × 50 ml). The combined organic layers were washed with water (20 ml), concentrated in the rotary evaporator to give the pure yell compound, dried in vaccum and yield: 20.2 g, 80%. MS(EI): m/z = 254([M—CH3]+). Crystals suitable for X-ray analysis were obtained by evaporate slowly the solution of the compound in 25% aqueous ammonia in 88% yield within a month.

Refinement top

H atoms attached to carbons were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, and Uiso(H) = 1.5Ueq(C) of the attached C atom for methyl H atoms and 1.2Ueq(C) for other H atoms. The H atoms were constrained with N—H distances of 0.93–0.96 Å, Uiso(H) = 1.2Ueq(N) and O—H distance of 0.85–0.90 Å with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: CrystalStructure (Rigaku/MSC, 2006); cell refinement: CrystalStructure (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Hydrogen bonds are shown as brown dashed lines.
[Figure 3] Fig. 3. A view of the crystal packing.
Ammonium 2-(3,4-dimethylbenzoyl)benzoate dihydrate top
Crystal data top
NH4+·C16H13O3·2H2OZ = 2
Mr = 307.34F(000) = 328
Triclinic, P1Dx = 1.271 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5039 (15) ÅCell parameters from 9573 reflections
b = 7.7458 (15) Åθ = 3.2–25.0°
c = 14.439 (3) ŵ = 0.09 mm1
α = 81.63 (3)°T = 293 K
β = 79.15 (3)°Block, colorless
γ = 78.67 (3)°0.20 × 0.18 × 0.15 mm
V = 803.0 (3) Å3
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
1674 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.032
Confocal monochromatorθmax = 25.0°, θmin = 3.2°
ω scans at fixed χ = 45°h = 88
6289 measured reflectionsk = 98
2791 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.0127P]
where P = (Fo2 + 2Fc2)/3
2791 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
NH4+·C16H13O3·2H2Oγ = 78.67 (3)°
Mr = 307.34V = 803.0 (3) Å3
Triclinic, P1Z = 2
a = 7.5039 (15) ÅMo Kα radiation
b = 7.7458 (15) ŵ = 0.09 mm1
c = 14.439 (3) ÅT = 293 K
α = 81.63 (3)°0.20 × 0.18 × 0.15 mm
β = 79.15 (3)°
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
1674 reflections with I > 2σ(I)
6289 measured reflectionsRint = 0.032
2791 independent reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.33 e Å3
S = 1.01Δρmin = 0.19 e Å3
2791 reflectionsAbsolute structure: ?
201 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8894 (3)0.3453 (3)0.37419 (13)0.0384 (5)
C21.0501 (3)0.4382 (2)0.33412 (13)0.0358 (5)
C31.0619 (3)0.5954 (3)0.36741 (15)0.0481 (6)
H30.96450.64780.41000.058*
C41.2161 (3)0.6742 (3)0.33795 (17)0.0568 (6)
H41.22180.77890.36080.068*
C51.3603 (3)0.5986 (3)0.27530 (17)0.0596 (7)
H51.46440.65140.25600.071*
C61.3514 (3)0.4435 (3)0.24053 (16)0.0502 (6)
H61.45010.39210.19820.060*
C71.1961 (3)0.3644 (2)0.26844 (13)0.0370 (5)
C81.1918 (3)0.2019 (3)0.22316 (13)0.0379 (5)
C91.0404 (3)0.2066 (2)0.16934 (12)0.0350 (5)
C100.9867 (3)0.0489 (3)0.15866 (13)0.0386 (5)
H101.04600.05770.18620.046*
C110.8476 (3)0.0471 (3)0.10814 (13)0.0400 (5)
C120.7643 (3)0.2059 (3)0.06282 (14)0.0415 (5)
C130.8184 (3)0.3637 (3)0.07373 (14)0.0458 (5)
H130.76330.47020.04410.055*
C140.9519 (3)0.3644 (3)0.12749 (14)0.0416 (5)
H140.98250.47120.13570.050*
C150.7866 (3)0.1259 (3)0.10343 (17)0.0578 (6)
H15A0.81450.15400.03910.087*
H15B0.65630.11480.12510.087*
H15C0.85040.21880.14310.087*
C160.6165 (3)0.2111 (3)0.00431 (17)0.0592 (6)
H16A0.51070.17310.04440.089*
H16B0.66230.13350.04420.089*
H16C0.58230.32980.02450.089*
N10.5486 (2)0.7384 (2)0.49120 (13)0.0498 (5)
H1A0.61380.79070.52450.060*
H1B0.62340.64520.46160.060*
H1C0.44640.69370.53180.060*
H1D0.51350.83060.44230.060*
O11.3187 (2)0.07641 (19)0.22420 (10)0.0517 (4)
O20.91984 (18)0.17891 (17)0.37486 (9)0.0428 (4)
O30.7384 (2)0.4340 (2)0.40630 (12)0.0634 (5)
O4W0.7770 (2)0.9592 (2)0.53226 (11)0.0572 (4)
H4WA0.86480.93040.56970.069*
H4WB0.82821.02010.47890.069*
O5W0.6084 (2)0.0140 (3)0.33873 (12)0.0833 (6)
H5WA0.52870.03950.30010.100*
H5WB0.69780.07080.31980.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0357 (12)0.0423 (13)0.0370 (11)0.0088 (10)0.0010 (9)0.0099 (9)
C20.0341 (11)0.0372 (11)0.0374 (10)0.0096 (9)0.0047 (9)0.0054 (9)
C30.0511 (14)0.0460 (13)0.0494 (13)0.0131 (11)0.0024 (10)0.0137 (10)
C40.0656 (17)0.0513 (14)0.0617 (15)0.0262 (12)0.0087 (13)0.0142 (12)
C50.0577 (16)0.0622 (17)0.0661 (15)0.0360 (13)0.0048 (13)0.0033 (12)
C60.0406 (13)0.0568 (14)0.0533 (13)0.0181 (11)0.0046 (10)0.0098 (11)
C70.0356 (12)0.0405 (12)0.0361 (11)0.0122 (9)0.0038 (9)0.0031 (9)
C80.0357 (12)0.0396 (12)0.0362 (11)0.0091 (10)0.0038 (9)0.0056 (9)
C90.0370 (11)0.0337 (11)0.0331 (10)0.0060 (9)0.0011 (9)0.0089 (9)
C100.0433 (12)0.0311 (11)0.0389 (11)0.0037 (9)0.0021 (9)0.0056 (9)
C110.0442 (12)0.0364 (12)0.0392 (11)0.0092 (10)0.0004 (10)0.0099 (9)
C120.0372 (12)0.0505 (13)0.0372 (11)0.0090 (10)0.0008 (9)0.0112 (10)
C130.0486 (14)0.0404 (12)0.0463 (12)0.0035 (10)0.0089 (10)0.0027 (10)
C140.0475 (13)0.0340 (12)0.0440 (12)0.0088 (10)0.0049 (10)0.0073 (9)
C150.0688 (17)0.0475 (14)0.0633 (15)0.0197 (12)0.0099 (12)0.0143 (11)
C160.0538 (15)0.0681 (17)0.0600 (14)0.0092 (12)0.0171 (12)0.0133 (13)
N10.0438 (11)0.0422 (10)0.0637 (12)0.0110 (8)0.0008 (9)0.0148 (9)
O10.0425 (9)0.0480 (9)0.0634 (10)0.0012 (7)0.0080 (7)0.0155 (8)
O20.0434 (9)0.0356 (8)0.0480 (8)0.0117 (6)0.0002 (7)0.0039 (6)
O30.0411 (10)0.0552 (10)0.0904 (12)0.0113 (8)0.0169 (8)0.0289 (9)
O4W0.0463 (9)0.0669 (10)0.0606 (9)0.0221 (8)0.0130 (7)0.0081 (8)
O5W0.0654 (12)0.1233 (16)0.0654 (11)0.0396 (12)0.0147 (9)0.0123 (11)
Geometric parameters (Å, º) top
C1—O31.249 (2)C11—C151.513 (3)
C1—O21.263 (2)C12—C131.399 (3)
C1—C21.505 (3)C12—C161.507 (3)
C2—C31.396 (2)C13—C141.379 (3)
C2—C71.395 (3)C13—H130.9300
C3—C41.382 (3)C14—H140.9300
C3—H30.9300C15—H15A0.9600
C4—C51.367 (3)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C5—C61.386 (3)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.389 (3)C16—H16C0.9600
C6—H60.9300N1—H1A0.9264
C7—C81.509 (3)N1—H1B0.9263
C8—O11.220 (2)N1—H1C0.9630
C8—C91.484 (3)N1—H1D0.9636
C9—C141.385 (3)O4W—H4WA0.9042
C9—C101.396 (3)O4W—H4WB0.9039
C10—C111.385 (3)O5W—H5WA0.8692
C10—H100.9300O5W—H5WB0.8542
C11—C121.396 (3)
O3—C1—O2124.36 (19)C10—C11—C15119.80 (19)
O3—C1—C2119.25 (18)C12—C11—C15120.91 (18)
O2—C1—C2116.36 (17)C11—C12—C13118.71 (17)
C3—C2—C7118.41 (18)C11—C12—C16121.57 (18)
C3—C2—C1120.09 (18)C13—C12—C16119.7 (2)
C7—C2—C1121.35 (16)C14—C13—C12121.3 (2)
C4—C3—C2121.0 (2)C14—C13—H13119.3
C4—C3—H3119.5C12—C13—H13119.3
C2—C3—H3119.5C13—C14—C9120.21 (17)
C5—C4—C3120.15 (19)C13—C14—H14119.9
C5—C4—H4119.9C9—C14—H14119.9
C3—C4—H4119.9C11—C15—H15A109.5
C4—C5—C6120.0 (2)C11—C15—H15B109.5
C4—C5—H5120.0H15A—C15—H15B109.5
C6—C5—H5120.0C11—C15—H15C109.5
C5—C6—C7120.4 (2)H15A—C15—H15C109.5
C5—C6—H6119.8H15B—C15—H15C109.5
C7—C6—H6119.8C12—C16—H16A109.5
C6—C7—C2119.96 (17)C12—C16—H16B109.5
C6—C7—C8117.37 (18)H16A—C16—H16B109.5
C2—C7—C8122.65 (17)C12—C16—H16C109.5
O1—C8—C9121.17 (16)H16A—C16—H16C109.5
O1—C8—C7120.19 (17)H16B—C16—H16C109.5
C9—C8—C7118.34 (17)H1A—N1—H1B111.3
C14—C9—C10118.58 (17)H1A—N1—H1C111.9
C14—C9—C8121.56 (16)H1B—N1—H1C108.1
C10—C9—C8119.85 (18)H1A—N1—H1D103.8
C11—C10—C9121.76 (19)H1B—N1—H1D107.6
C11—C10—H10119.1H1C—N1—H1D114.1
C9—C10—H10119.1H4WA—O4W—H4WB105.6
C10—C11—C12119.28 (17)H5WA—O5W—H5WB111.4
O3—C1—C2—C328.0 (3)C2—C7—C8—C957.7 (3)
O2—C1—C2—C3150.26 (18)O1—C8—C9—C14147.4 (2)
O3—C1—C2—C7156.54 (19)C7—C8—C9—C1426.3 (3)
O2—C1—C2—C725.2 (3)O1—C8—C9—C1031.4 (3)
C7—C2—C3—C41.5 (3)C7—C8—C9—C10154.87 (18)
C1—C2—C3—C4174.1 (2)C14—C9—C10—C110.4 (3)
C2—C3—C4—C50.0 (3)C8—C9—C10—C11179.27 (17)
C3—C4—C5—C60.6 (4)C9—C10—C11—C123.1 (3)
C4—C5—C6—C70.4 (3)C9—C10—C11—C15176.39 (18)
C5—C6—C7—C22.0 (3)C10—C11—C12—C133.0 (3)
C5—C6—C7—C8176.4 (2)C15—C11—C12—C13176.5 (2)
C3—C2—C7—C62.5 (3)C10—C11—C12—C16178.04 (19)
C1—C2—C7—C6173.04 (19)C15—C11—C12—C162.5 (3)
C3—C2—C7—C8175.84 (18)C11—C12—C13—C140.4 (3)
C1—C2—C7—C88.6 (3)C16—C12—C13—C14179.34 (19)
C6—C7—C8—O153.1 (3)C12—C13—C14—C92.3 (3)
C2—C7—C8—O1128.6 (2)C10—C9—C14—C132.3 (3)
C6—C7—C8—C9120.7 (2)C8—C9—C14—C13176.55 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4W0.931.982.836 (2)152
N1—H1B···O30.931.902.820 (2)170
N1—H1C···O3i0.961.882.823 (3)167
N1—H1D···O5Wii0.962.032.871 (3)144
N1—H1D···O4Wiii0.962.453.067 (3)121
O4W—H4WA···O2iv0.901.932.809 (2)164
O4W—H4WB···O2ii0.901.912.808 (2)172
O5W—H5WA···O1v0.872.042.899 (2)171
O5W—H5WB···O20.852.313.032 (2)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1; (v) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4W0.931.982.836 (2)152.0
N1—H1B···O30.931.902.820 (2)169.6
N1—H1C···O3i0.961.882.823 (3)167.4
N1—H1D···O5Wii0.962.032.871 (3)144.1
N1—H1D···O4Wiii0.962.453.067 (3)121.4
O4W—H4WA···O2iv0.901.932.809 (2)164.1
O4W—H4WB···O2ii0.901.912.808 (2)171.6
O5W—H5WA···O1v0.872.042.899 (2)171.3
O5W—H5WB···O20.852.313.032 (2)141.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1; (v) x1, y, z.
Acknowledgements top

The work was supported by the Youth Fund of Yunnan Normal University and the Scientific Research Foundation of Yunnan Provincial Department of Education (grant No. 22012Z019).

references
References top

Boon, J. A., Levisky, J. A., Pflug, J. L. & Wilkes, J. S. (1986). J. Org. Chem. 51, 480–483.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Elofson, R. M., Schulz, K. F., Galbraith, B. E. & Newton, R. (1965). Can. J. Chem. 43, 1553–1559.

Gopalakrishnan, M., Sureshkumar, P., Kanagarajan, V. & Thanusu, J. (2005). Catal. Commun. 6, 753–756.

Gouda, M. A., Berghot, M. A., Shoeib, A. M. & Khalil, A. M. (2010). Eur. J. Med. Chem. 45, 1843–1848.

Qiao, W.-Z., Zheng, J., Wang, Y.-J., Song, N.-H., Wan, X.-H. & Wang, Z.-Y. (2008). Org. Lett. 10, 241–244.

Rigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yeung, K. S., Farkas, M. E., Qiu, Z. & Yang, Z. (2002). Tetrahedron Lett. 43, 5793–5795.