metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages m298-m299

Pyridinium bis­­(pyridine-κN)tetra­kis­(thio­cyanato-κN)ferrate(III)

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska 64/13, 01601 Kyiv, Ukraine, bDepartment of Chemistry, University of Jyväskylä, PO Box 35, FI-40014 Jyväskyä, Finland, and cKyiv National University of Construction and Architecture, Department of Chemistry, Povitroflotsky Avenue 31, 03680 Kyiv, Ukraine
*Correspondence e-mail: shylin@univ.kiev.ua

(Received 25 April 2013; accepted 28 April 2013; online 4 May 2013)

In the title compound, (C5H6N)[Fe(NCS)4(C5H5N)2], the FeIII ion is coordinated by four thio­cyanate N atoms and two pyridine N atoms in a trans arrangement, forming an FeN6 polyhedron with a slightly distorted octa­hedral geometry. Charge balance is achieved by one pyridinium cation bound to the complex anion via N—H⋯S hydrogen bonding. The asymmetric unit consists of one FeIII cation, four thio­cyanate anions, two coordinated pyridine mol­ecules and one pyridinium cation. The structure exhibits ππ inter­actions between pyridine rings [centroid–centroid distances = 3.7267 (2), 3.7811 (2) and 3.8924 (2) Å]. The N atom and a neighboring C atom of the pyridinium cation are statistically disordered with an occupancy ratio of 0.58 (2):0.42 (2).

Related literature

For the use of materials with mol­ecular assemblies comprising cationic and anionic modules, see: Fritsky et al. (1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.], 2004[Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746-3752.]); Strotmeyer et al. (2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]); Kanderal et al. (2005[Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]). For FeII–thio­cyanate complexes with aromatic N-donor ligands indicating spin crossover, see: Gamez et al. (2009[Gamez, P., Costa, J. S., Quesada, M. & Aromí, G. (2009). Dalton Trans. pp. 7845-7853.]). For related structures, see: Petrusenko et al. (1997[Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267-274.]); Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.]); Penkova et al. (2010[Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036-3040.]); Shylin et al. (2013[Shylin, S. I., Gural'skiy, I. A., Haukka, M. & Golenya, I. A. (2013). Acta Cryst. E69, m280.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H6N)[Fe(NCS)4(C5H5N)2]

  • Mr = 526.48

  • Monoclinic, P 21 /n

  • a = 10.7650 (7) Å

  • b = 14.0424 (8) Å

  • c = 15.7266 (9) Å

  • β = 103.244 (3)°

  • V = 2314.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 120 K

  • 0.21 × 0.14 × 0.07 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.814, Tmax = 0.929

  • 17377 measured reflections

  • 4739 independent reflections

  • 3027 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.065

  • S = 0.92

  • 4739 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N1 2.1591 (18)
Fe1—N2 2.1727 (19)
Fe1—N3 2.012 (2)
Fe1—N4 2.026 (2)
Fe1—N5 2.049 (2)
Fe1—N6 2.034 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7A⋯S3i 0.88 2.82 3.532 (2) 139
N7—H7A⋯S2 0.88 2.86 3.462 (2) 127
N7A—H7AA⋯S4ii 0.88 2.81 3.558 (2) 144
N7A—H7AA⋯S2 0.88 2.94 3.504 (2) 124
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1997[Brandenburg, K. (1997). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecular assemblies consisting of cationic and anionic modules are of great interest for crystal engineering and molecular magnetism (Strotmeyer et al., 2003; Fritsky et al., 2004). Target properties of such compounds can be tuned by different types of intermolecular interactions, such as coordination and hydrogen bonds, ππ and lone pair – π contacts, etc. (Fritsky et al., 1998; Kanderal et al., 2005). In certain cases, even the existence of spin crossover in these complexes can be observed. Therefore, FeII isothiocyanate complexes with aromatic N-donor ligands attract much attention considering the possible metal ion spin state modulation by variation of a ligand (Gamez et al., 2009). Herein, we attempted to synthesize FeII thiocyanate complex with 1,5-naphthyridine, however, the reaction of it and [FeII(NCS)2(py)4] (py = pyridine) in CHCl3 in air led to the oxidation of FeII and to the formation of the title compound.

The compound consists of complex anion [Fe(NCS)4(py)2]- and pyridinium cation the N7 atom of which is disordered over two alternative sites with the occupancy ratio of 0.58 (2): 0.42 (2). The FeIII ion is sixfold coordinated by four N atoms of thiocyanate anions forming the equatorial plane and two N atoms of two pyridine ligands occupying axial positions (Fig. 1). The distances between FeIII ion and N atoms of the thiocyanate anions are shorter than those between FeIII and N atoms of the pyridine ligands (Table 1), hence FeN6 octahedron is slightly distorted. A similar distortion of the coordination polyhedron was reported for the related compound (Hpy)[Fe(NCS)4(py)2].4(cnpz).(py), where cnpz = pyrazine-2-carbonitrile (Shylin et al., 2013). The thiocyanate ligands are only bound through N atoms and are quasi-linear, while the Fe–NCS linkages are bent [Fe1—N3—C11 = 162.43 (19)°, Fe1—N4—C12 = 161.67 (19)°, Fe1—N5—C13 = 165.7 (2)°, Fe1—N6—C14 = 158.7 (2)°]. These structural features are typical for the complexes where the NCS group is N-bound (Petrusenko et al., 1997). The C—N and C—C bond lengths in the coordinated pyridine ligands are normal and close to the values observed in the related structures (Moroz et al., 2010; Penkova et al., 2010).

In the title compound pyridine ligands and pyridinium cations interact with one another via ππ stacking, with distances between the centroids of 3.7267 (2), 3.7811 (2) and 3.8924 (2) Å (Fig. 2). Pyridinium cations are also bound to the anionic complex through a number of N—H···S hydrogen bonds (Table 2).

Related literature top

For use of molecular assemblies comprising cationic and anionic modules, see: Fritsky et al. (1998, 2004); Strotmeyer et al. (2003); Kanderal et al. (2005). For FeII–thiocyanate complexes with aromatic N-donor ligands indicating spin crossover, see: Gamez et al. (2009). For related structures, see: Petrusenko et al. (1997); Moroz et al. (2010); Penkova et al. (2010); Shylin et al. (2013).

Experimental top

Crystals of the title compound were obtained by adding 1,5-naphthyridine (26 mg, 0.2 mmol) to tetrakis(pyridine)bis(isothiocyanato)iron(II) [Fe(NCS)2(py)4] (48.8 mg, 0.1 mmol) in CHCl3 (5 ml). The solution was left to evaporate in air. In one day this yielded red crystals that were collected, washed with water and dried in air. Yield is 16 mg (30% relative to Fe).

Refinement top

The N atom of the pyridinium cation was disordered over two alternative sites with the occupancy ratio of 0.58/0.42. Hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95 and N—H = 0.88 Å, and Uiso = 1.2 Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound showing hydrogen bonds and ππ contacts as dashed lines (carmine = Fe, yellow = S, blue = N, light-grey = C, grey = H).
Pyridinium bis(pyridine-κN)tetrakis(thiocyanato-κN)ferrate(III) top
Crystal data top
(C5H6N)[Fe(NCS)4(C5H5N)2]F(000) = 1076
Mr = 526.48Dx = 1.511 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3249 reflections
a = 10.7650 (7) Åθ = 2.5–26.9°
b = 14.0424 (8) ŵ = 1.03 mm1
c = 15.7266 (9) ÅT = 120 K
β = 103.244 (3)°Block, red
V = 2314.1 (2) Å30.21 × 0.14 × 0.07 mm
Z = 4
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
4739 independent reflections
Radiation source: fine-focus sealed tube3027 reflections with I > 2σ(I)
Curved graphite crystal monochromatorRint = 0.065
Detector resolution: 16 pixels mm-1θmax = 26.4°, θmin = 2.0°
ϕ scans and ω scans with κ offseth = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1717
Tmin = 0.814, Tmax = 0.929l = 1916
17377 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.024P)2]
where P = (Fo2 + 2Fc2)/3
4739 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
(C5H6N)[Fe(NCS)4(C5H5N)2]V = 2314.1 (2) Å3
Mr = 526.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7650 (7) ŵ = 1.03 mm1
b = 14.0424 (8) ÅT = 120 K
c = 15.7266 (9) Å0.21 × 0.14 × 0.07 mm
β = 103.244 (3)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
4739 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3027 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.929Rint = 0.065
17377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 0.92Δρmax = 0.33 e Å3
4739 reflectionsΔρmin = 0.36 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.02757 (4)0.74386 (2)0.35673 (2)0.01575 (10)
S10.26742 (7)0.99542 (5)0.35060 (4)0.02555 (18)
S20.33249 (7)0.49516 (5)0.37979 (4)0.02563 (18)
S30.41585 (7)0.90657 (5)0.34609 (4)0.02646 (18)
S40.37170 (7)0.61072 (5)0.37071 (5)0.03125 (19)
N10.02004 (18)0.75765 (14)0.21626 (11)0.0158 (5)
N20.0714 (2)0.71819 (13)0.49668 (12)0.0160 (5)
N30.0733 (2)0.86076 (15)0.37176 (13)0.0227 (5)
N40.1344 (2)0.62743 (14)0.34665 (13)0.0212 (5)
N50.1848 (2)0.82818 (14)0.36327 (12)0.0204 (5)
N60.1316 (2)0.66311 (14)0.34861 (13)0.0224 (5)
N70.2005 (2)0.26981 (16)0.34397 (14)0.0236 (7)0.58 (2)
H7A0.19430.32570.31800.028*0.58 (2)
N7A0.2499 (2)0.26424 (16)0.43092 (15)0.0236 (7)0.42 (2)
H7AA0.27570.31650.46060.028*0.42 (2)
C120.2170 (3)0.57121 (17)0.36058 (15)0.0181 (6)
C140.2322 (3)0.64138 (17)0.35776 (15)0.0185 (6)
C110.1543 (3)0.91796 (17)0.36277 (14)0.0171 (6)
C130.2810 (3)0.86161 (17)0.35567 (15)0.0183 (6)
C50.0212 (2)0.68043 (17)0.16522 (15)0.0185 (6)
H50.00130.62040.19230.022*
C10.0523 (2)0.84165 (17)0.17635 (15)0.0192 (6)
H10.05260.89670.21140.023*
C150.2499 (2)0.26424 (16)0.43092 (15)0.0236 (7)0.58 (2)
H150.27770.32070.46300.028*0.58 (2)
C15A0.2005 (2)0.26981 (16)0.34397 (14)0.0236 (7)0.42 (2)
H15A0.19380.33010.31590.028*0.42 (2)
C60.1024 (2)0.78922 (17)0.55371 (15)0.0187 (6)
H60.10880.85170.53200.022*
C100.0651 (3)0.63017 (18)0.52842 (16)0.0220 (6)
H100.04380.57880.48840.026*
C40.0536 (2)0.68502 (18)0.07530 (15)0.0207 (6)
H40.05460.62900.04130.025*
C30.0846 (2)0.77183 (18)0.03525 (16)0.0232 (6)
H30.10530.77680.02660.028*
C80.1183 (3)0.68517 (18)0.67526 (16)0.0246 (6)
H80.13360.67400.73640.030*
C70.1258 (3)0.77584 (17)0.64337 (15)0.0227 (6)
H70.14660.82830.68210.027*
C20.0849 (2)0.85126 (18)0.08662 (15)0.0208 (6)
H20.10730.91180.06070.025*
C160.2603 (3)0.18020 (18)0.47284 (17)0.0272 (7)
H160.29470.17710.53410.033*
C190.1606 (3)0.19118 (18)0.29654 (17)0.0268 (7)
H190.12590.19590.23550.032*
C90.0882 (3)0.61079 (18)0.61679 (16)0.0245 (7)
H90.08340.54740.63690.029*
C170.2203 (3)0.09859 (19)0.42586 (17)0.0303 (7)
H170.22710.03870.45460.036*
C180.1707 (3)0.10391 (18)0.33741 (17)0.0301 (7)
H180.14360.04780.30470.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01694 (19)0.01441 (19)0.01572 (17)0.00150 (16)0.00334 (13)0.00003 (15)
S10.0250 (4)0.0179 (4)0.0332 (4)0.0067 (3)0.0055 (3)0.0014 (3)
S20.0244 (4)0.0204 (4)0.0326 (4)0.0075 (3)0.0075 (3)0.0044 (3)
S30.0224 (4)0.0271 (4)0.0307 (4)0.0042 (3)0.0077 (3)0.0048 (3)
S40.0240 (4)0.0326 (4)0.0386 (4)0.0042 (3)0.0104 (3)0.0080 (3)
N10.0135 (12)0.0135 (11)0.0204 (11)0.0022 (9)0.0042 (8)0.0012 (9)
N20.0197 (13)0.0120 (11)0.0163 (10)0.0010 (9)0.0039 (9)0.0003 (9)
N30.0276 (14)0.0194 (12)0.0216 (12)0.0044 (11)0.0071 (10)0.0003 (10)
N60.0251 (15)0.0219 (12)0.0192 (12)0.0014 (11)0.0030 (10)0.0001 (10)
N50.0216 (14)0.0203 (12)0.0187 (11)0.0004 (10)0.0033 (9)0.0013 (9)
N40.0239 (14)0.0186 (12)0.0209 (12)0.0031 (11)0.0048 (10)0.0014 (10)
C120.0216 (16)0.0162 (14)0.0165 (13)0.0051 (12)0.0044 (11)0.0002 (11)
C140.0257 (18)0.0139 (14)0.0145 (13)0.0025 (12)0.0014 (12)0.0010 (11)
C110.0233 (16)0.0172 (14)0.0105 (12)0.0051 (12)0.0033 (11)0.0020 (10)
C130.0258 (17)0.0151 (13)0.0133 (13)0.0056 (13)0.0026 (11)0.0011 (11)
C50.0186 (15)0.0141 (13)0.0223 (14)0.0044 (12)0.0037 (11)0.0004 (11)
C10.0206 (16)0.0148 (14)0.0223 (14)0.0033 (12)0.0055 (11)0.0003 (11)
C150.0283 (16)0.0215 (15)0.0229 (14)0.0032 (12)0.0100 (11)0.0042 (11)
N70.0261 (15)0.0195 (14)0.0273 (15)0.0031 (11)0.0102 (11)0.0026 (11)
N7A0.0283 (16)0.0215 (15)0.0229 (14)0.0032 (12)0.0100 (11)0.0042 (11)
C15A0.0261 (15)0.0195 (14)0.0273 (15)0.0031 (11)0.0102 (11)0.0026 (11)
C60.0186 (15)0.0144 (13)0.0233 (14)0.0005 (11)0.0051 (11)0.0013 (11)
C100.0243 (16)0.0194 (14)0.0220 (14)0.0008 (12)0.0047 (12)0.0002 (12)
C40.0211 (16)0.0198 (15)0.0209 (14)0.0049 (12)0.0041 (11)0.0082 (12)
C30.0217 (16)0.0288 (16)0.0177 (13)0.0087 (12)0.0014 (11)0.0024 (12)
C80.0242 (17)0.0326 (16)0.0171 (13)0.0022 (13)0.0047 (12)0.0040 (13)
C70.0249 (16)0.0229 (15)0.0189 (14)0.0007 (12)0.0023 (12)0.0060 (12)
C20.0207 (16)0.0189 (14)0.0223 (14)0.0019 (12)0.0036 (12)0.0037 (12)
C160.0354 (19)0.0279 (16)0.0213 (14)0.0020 (14)0.0125 (13)0.0014 (13)
C190.0294 (18)0.0295 (16)0.0231 (14)0.0027 (14)0.0094 (12)0.0024 (13)
C90.0303 (17)0.0186 (15)0.0248 (15)0.0010 (13)0.0065 (12)0.0079 (12)
C170.044 (2)0.0209 (16)0.0305 (16)0.0029 (14)0.0187 (14)0.0070 (13)
C180.041 (2)0.0208 (16)0.0314 (16)0.0046 (14)0.0131 (14)0.0068 (13)
Geometric parameters (Å, º) top
Fe1—N12.1591 (18)C15—H150.9500
Fe1—N22.1727 (19)N7—C191.346 (3)
Fe1—N32.012 (2)N7—H7A0.8800
Fe1—N42.026 (2)C6—C71.387 (3)
Fe1—N52.049 (2)C6—H60.9500
Fe1—N62.034 (2)C10—C91.382 (3)
S1—C111.611 (3)C10—H100.9500
S2—C121.614 (3)C4—C31.377 (3)
S3—C131.621 (3)C4—H40.9500
S4—C141.620 (3)C3—C21.378 (3)
N1—C11.344 (3)C3—H30.9500
N1—C51.347 (3)C8—C71.378 (3)
N2—C61.332 (3)C8—C91.380 (3)
N2—C101.341 (3)C8—H80.9500
N3—C111.170 (3)C7—H70.9500
N6—C141.165 (3)C2—H20.9500
N5—C131.168 (3)C16—C171.378 (3)
N4—C121.172 (3)C16—H160.9500
C5—C41.378 (3)C19—C181.377 (3)
C5—H50.9500C19—H190.9500
C1—C21.380 (3)C9—H90.9500
C1—H10.9500C17—C181.373 (4)
C15—C161.344 (3)C17—H170.9500
C15—N71.351 (3)C18—H180.9500
N3—Fe1—N4177.50 (9)C19—N7—H7A119.5
N3—Fe1—N689.58 (9)C15—N7—H7A119.5
N4—Fe1—N691.74 (9)N2—C6—C7122.8 (2)
N3—Fe1—N589.11 (9)N2—C6—H6118.6
N4—Fe1—N589.60 (9)C7—C6—H6118.6
N6—Fe1—N5178.43 (9)N2—C10—C9122.9 (2)
N3—Fe1—N192.24 (8)N2—C10—H10118.5
N4—Fe1—N189.90 (8)C9—C10—H10118.5
N6—Fe1—N189.24 (8)C3—C4—C5119.2 (2)
N5—Fe1—N189.96 (8)C3—C4—H4120.4
N3—Fe1—N290.81 (8)C5—C4—H4120.4
N4—Fe1—N287.13 (8)C4—C3—C2118.8 (2)
N6—Fe1—N287.45 (8)C4—C3—H3120.6
N5—Fe1—N293.43 (8)C2—C3—H3120.6
N1—Fe1—N2175.48 (7)C7—C8—C9118.8 (2)
C1—N1—C5117.51 (19)C7—C8—H8120.6
C1—N1—Fe1122.14 (16)C9—C8—H8120.6
C5—N1—Fe1120.33 (15)C8—C7—C6118.9 (2)
C6—N2—C10117.8 (2)C8—C7—H7120.6
C6—N2—Fe1121.38 (15)C6—C7—H7120.6
C10—N2—Fe1120.83 (15)C3—C2—C1119.1 (2)
C11—N3—Fe1162.43 (19)C3—C2—H2120.5
C14—N6—Fe1158.7 (2)C1—C2—H2120.5
C13—N5—Fe1165.7 (2)C15—C16—C17119.1 (2)
C12—N4—Fe1161.67 (19)C15—C16—H16120.4
N4—C12—S2179.0 (2)C17—C16—H16120.4
N6—C14—S4179.7 (3)N7—C19—C18119.4 (2)
N3—C11—S1179.1 (2)N7—C19—H19120.3
N5—C13—S3179.0 (2)C18—C19—H19120.3
N1—C5—C4122.6 (2)C8—C9—C10118.8 (2)
N1—C5—H5118.7C8—C9—H9120.6
C4—C5—H5118.7C10—C9—H9120.6
N1—C1—C2122.8 (2)C18—C17—C16119.9 (2)
N1—C1—H1118.6C18—C17—H17120.0
C2—C1—H1118.6C16—C17—H17120.0
C16—C15—N7121.1 (2)C17—C18—C19119.5 (2)
C16—C15—H15119.4C17—C18—H18120.3
N7—C15—H15119.4C19—C18—H18120.3
C19—N7—C15121.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···S3i0.882.823.532 (2)139
N7—H7A···S20.882.863.462 (2)127
N7A—H7AA···S4ii0.882.813.558 (2)144
N7A—H7AA···S20.882.943.504 (2)124
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C5H6N)[Fe(NCS)4(C5H5N)2]
Mr526.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)10.7650 (7), 14.0424 (8), 15.7266 (9)
β (°) 103.244 (3)
V3)2314.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.21 × 0.14 × 0.07
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.814, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
17377, 4739, 3027
Rint0.065
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.065, 0.92
No. of reflections4739
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1997).

Selected bond lengths (Å) top
Fe1—N12.1591 (18)Fe1—N42.026 (2)
Fe1—N22.1727 (19)Fe1—N52.049 (2)
Fe1—N32.012 (2)Fe1—N62.034 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···S3i0.882.823.532 (2)139.1
N7—H7A···S20.882.863.462 (2)127.3
N7A—H7AA···S4ii0.882.813.558 (2)143.8
N7A—H7AA···S20.882.943.504 (2)123.7
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z+1.
 

References

First citationBrandenburg, K. (1997). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.  Web of Science CSD CrossRef CAS Google Scholar
First citationGamez, P., Costa, J. S., Quesada, M. & Aromí, G. (2009). Dalton Trans. pp. 7845–7853.  Web of Science CrossRef Google Scholar
First citationKanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef PubMed Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPenkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShylin, S. I., Gural'skiy, I. A., Haukka, M. & Golenya, I. A. (2013). Acta Cryst. E69, m280.  CSD CrossRef IUCr Journals Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages m298-m299
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds