supplementary materials


xu5704 scheme

Acta Cryst. (2013). E69, m342    [ doi:10.1107/S160053681301413X ]

catena-Poly[[(triphenylphosphane-[kappa]P)silver(I)]-[mu]-4,4'-bipyridine-[kappa]2N:N'-[(triphenylphosphane-[kappa]P)silver(I)]-di-[mu]-chlorido]

X.-M. Song, F. Hu, H.-T. Shi, Q. Chen and Q.-F. Zhang

Abstract top

In the title coordination polymer, [Ag2Cl2(C10H8N2)(C18H15P)2]n, the AgI cation is coordinated by a 4,4'-bipyridine N atom, a triphenylphosphane P atom and two Cl- anions in a distorted tetrahedral geometry. The 4,4-bipyridine and Cl- anions bridge the AgI cations, forming polymeric chains running along [21-1]. In the crystal, weak C-H...Cl interactions link the polymeric chains into a three-dimensiona supramolecular architecture.

Comment top

There has been an extensive interest in d10 metal complexes with phosphane ligands due to their potential application in luminescence (Yam & Lo, 1999), for this important reason, the study of d10 "closed-shell" interactions that exist between the monovalent elements of group 11 has been active for many years (Pyykko, 2004). Actually, these metal-metal interactions are typically associated with the ligand-bridged, hydrogen-bonded and pi-pi stacked effects, which may result in formation of supramolecular assemblies (Mishra et al., 2007; Zaworotko, 1994). Metal coordination polymers with linear spacer ligands have been exploited by many research workers to construct a variety of network structures. Specifically silver(I) ion has been extensively used in inorganic crystal engineering using self-assembly of tailored building-blocks (Hung-Low & Klausmeyer, 2008). In recent decade, self-assembly of silver(I) salts with different aliphatic dinitrile ligands such as 4,4'-bipyridyl (4,4'-bpy) have also been successfully made resulting into novel coordination polymers (Sampanthar & Vittal, 2000). With this in mind, we have chosen a simple AgCl salt and a linear spacer 4,4'-bpy and allowed them to react separately with PPh3 as an ancillary ligand. The results of this work are reported in this paper.

The title coordination polymer crystallizes in the triclinic centrosymmetric P-1 space group with Z = 2 as it contains one half molecule in an asymmetric unit. A view of the structure of building block in the title polymeric complex is depicted in Fig. 1. The structure consists of {(µ-Cl)(AgPPh3)}2 units bridged by 4,4'-bipy ligands to form a zig-zig infinite chain, as shown in Fig. 2. This structure is isostructural to [(µ-4,4'-bipy)(µ-I)2(AgPPh3)2]n (Sampanthar & Vittal, 2000) and [(µ-4,4'-bipy)(µ-Cl)2(CuPPh3)2]n (Lu et al., 1997). The coordination polymer possesses to the crystallographic inversion center through the middle of Ag2Cl2 squares. Two pyridine rings in the 4,4'-bipy are non-planar with dihedral angle of 22.4 (3)°. The average Ag···Ag distance in the Ag2Cl2 ring is 3.392 (1) Å, which is slightly longer than that of 3.139 (1) Å in [(µ-4,4'-bipy)(µ-I)2(AgPPh3)2]n (Sampanthar & Vittal, 2000). Each silver(I) ion in the title coordination polymer is coordinated by one nitrogen atom of 4,4'-bipy ligand, one phosphorous atom of PPh3 ligand and two chloride atoms, leading to the distorted tetrahedron with the angles around silver varying from 94.24 (7)° to 130.08 (3)°. Two silver(I) ions are separated by 4,4'-bipy groups at a distances of 10.957 (1) Å along with axial direction. The average Ag—N and Ag—P bond lengths are 2.408 (3) Å and 2.4116 (9) Å, respectively, which almost similar to the values reported in the related other complexes (Sampanthar & Vittal, 2000, Sun et al., 2009). The Ag—Cl—Ag angles of 97.37 (3)° and 102.05 (2)° in the title coordination polymer are obviously larger than the Ag—I—Ag angle of 66.27 (1)° in [(µ-4,4'-bipy)(µ-I)2(AgPPh3)2]n (Sampanthar & Vittal, 2000).

Related literature top

For background to silver coordination polymers, see: Hung-Low & Klausmeyer (2008); Mishra et al. (2007); Pyykko (2004); Yam & Lo (1999); Zaworotko (1994). For related structures, see: Lu et al. (1997); Sampanthar & Vittal (2000); Sun et al. (2009).

Experimental top

AgCl (0.080 g, 0.56 mmol) and PPh3 (0.162 g, 0.62 mmol) were mixed together and stirred in a mixture of CH2Cl2 (15 mL) and MeCN (5 mL) for 45 min to get a clear solution. An MeCN solution (5 mL) of 4,4'-bipyridyl (0.043 g, 0.28 mmol) was added slowly to the above solution with stirring. The clear solution was filtered and left for slow evaporation. Colorless crystals were collected by decanting the solvent and washed with MeOH (5 mL) and Et2O (5 x 2 mL) then air-dried. Yield: 157 mg, 58 %. Analysis for C46H38N2Cl2P2Ag2: calcd C 57.11, H 3.96, N 2.90 %; found C 57.07, H 4.03, N 2.88 %.

Refinement top

H atoms were placed in geometrically idealized positions and refined in riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title coordination polymer, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view the [(µ-4,4'-bipy)(µ-Cl)2(AgPPh3)2]n chain, four unit cells along as drawn by ORTEP with 50% probability level.
catena-Poly[[(triphenylphosphane-κP)silver(I)]-µ-4,4'-bipyridine-κ2N:N'-[(triphenylphosphane-κP)silver(I)]-di-µ-chlorido] top
Crystal data top
[Ag2Cl2(C10H8N2)(C18H15P)2]Z = 2
Mr = 967.36F(000) = 972
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1042 (16) ÅCell parameters from 4454 reflections
b = 13.887 (2) Åθ = 2.3–28.9°
c = 17.826 (3) ŵ = 1.20 mm1
α = 70.753 (3)°T = 296 K
β = 79.332 (4)°Block, light yellow
γ = 75.190 (3)°0.23 × 0.17 × 0.14 mm
V = 2044.5 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9594 independent reflections
Radiation source: fine-focus sealed tube6338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 29.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1012
Tmin = 0.770, Tmax = 0.850k = 1219
14039 measured reflectionsl = 1523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0251P)2 + 1.3705P]
where P = (Fo2 + 2Fc2)/3
9594 reflections(Δ/σ)max = 0.001
487 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Ag2Cl2(C10H8N2)(C18H15P)2]γ = 75.190 (3)°
Mr = 967.36V = 2044.5 (6) Å3
Triclinic, P1Z = 2
a = 9.1042 (16) ÅMo Kα radiation
b = 13.887 (2) ŵ = 1.20 mm1
c = 17.826 (3) ÅT = 296 K
α = 70.753 (3)°0.23 × 0.17 × 0.14 mm
β = 79.332 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9594 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6338 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.850Rint = 0.018
14039 measured reflectionsθmax = 29.2°
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.59 e Å3
S = 1.01Δρmin = 0.44 e Å3
9594 reflectionsAbsolute structure: ?
487 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.34094 (3)1.07363 (2)0.539814 (18)0.05839 (9)
Ag20.34478 (3)0.431910 (18)0.960631 (16)0.05064 (8)
Cl10.59763 (10)0.97839 (8)0.59551 (5)0.0607 (2)
Cl20.60355 (9)0.52295 (6)0.90046 (5)0.04829 (19)
P10.20766 (10)1.25225 (6)0.52007 (5)0.0454 (2)
P20.21810 (8)0.25279 (6)0.97259 (5)0.03729 (17)
N10.1967 (3)0.9471 (2)0.62893 (17)0.0524 (7)
N20.2206 (3)0.5717 (2)0.88543 (16)0.0469 (6)
C10.0440 (4)0.9661 (3)0.6366 (2)0.0638 (10)
H10.00761.03050.60710.077*
C20.0412 (4)0.8954 (3)0.6859 (2)0.0558 (9)
H20.14730.91270.68860.067*
C30.0305 (3)0.7994 (2)0.73101 (18)0.0416 (7)
C40.1897 (4)0.7796 (3)0.7233 (2)0.0559 (9)
H40.24440.71610.75240.067*
C50.2660 (4)0.8549 (3)0.6722 (2)0.0608 (10)
H50.37230.83970.66800.073*
C60.2807 (4)0.6486 (3)0.8242 (2)0.0490 (8)
H60.37980.65210.81550.059*
C70.2039 (4)0.7233 (2)0.77318 (19)0.0468 (8)
H70.25100.77510.73130.056*
C80.0565 (3)0.7208 (2)0.78454 (18)0.0391 (7)
C90.0055 (4)0.6417 (3)0.8484 (2)0.0530 (9)
H90.10400.63650.85890.064*
C100.0804 (4)0.5706 (3)0.8963 (2)0.0555 (9)
H100.03660.51840.93900.067*
C110.2506 (4)1.3467 (3)0.42354 (19)0.0480 (8)
C120.4036 (4)1.3413 (3)0.3919 (2)0.0631 (10)
H120.47981.28910.41810.076*
C130.4405 (5)1.4153 (4)0.3205 (2)0.0745 (12)
H130.54231.41330.29950.089*
C140.3284 (7)1.4907 (3)0.2812 (3)0.0820 (14)
H140.35441.53960.23360.098*
C150.1790 (6)1.4946 (3)0.3112 (2)0.0799 (13)
H150.10291.54510.28350.096*
C160.1408 (5)1.4234 (3)0.3828 (2)0.0637 (10)
H160.03871.42750.40370.076*
C210.2366 (3)1.3116 (3)0.5928 (2)0.0460 (7)
C220.2340 (5)1.2515 (3)0.6731 (2)0.0629 (10)
H220.22161.18300.68770.075*
C230.2498 (5)1.2930 (4)0.7306 (2)0.0761 (12)
H230.24471.25300.78400.091*
C240.2731 (5)1.3926 (4)0.7100 (3)0.0721 (11)
H240.28491.42000.74910.087*
C250.2789 (5)1.4516 (3)0.6310 (3)0.0729 (11)
H250.29511.51910.61650.087*
C260.2608 (4)1.4113 (3)0.5732 (2)0.0577 (9)
H260.26491.45200.52000.069*
C310.0001 (4)1.2669 (2)0.52947 (19)0.0445 (7)
C320.0577 (4)1.2105 (3)0.4944 (2)0.0605 (9)
H320.00881.16960.46510.073*
C330.2136 (5)1.2147 (4)0.5027 (3)0.0779 (12)
H330.25151.17560.48030.093*
C340.3120 (5)1.2778 (4)0.5448 (2)0.0697 (11)
H340.41671.28100.55070.084*
C350.2569 (4)1.3350 (3)0.5774 (2)0.0602 (9)
H350.32401.37830.60460.072*
C360.1008 (4)1.3293 (3)0.5703 (2)0.0510 (8)
H360.06401.36820.59350.061*
C410.0208 (3)0.2281 (2)0.99274 (19)0.0405 (7)
C420.0690 (4)0.2968 (3)0.9441 (2)0.0515 (8)
H420.02940.35010.90070.062*
C430.2169 (4)0.2874 (3)0.9591 (3)0.0659 (11)
H430.27560.33440.92620.079*
C440.2764 (4)0.2080 (3)1.0228 (3)0.0658 (11)
H440.37540.20151.03340.079*
C450.1892 (4)0.1383 (3)1.0709 (2)0.0639 (10)
H450.23000.08391.11340.077*
C460.0410 (4)0.1492 (3)1.0561 (2)0.0509 (8)
H460.01770.10251.08940.061*
C510.2043 (3)0.2094 (2)0.88489 (18)0.0390 (7)
C520.0742 (4)0.1461 (3)0.8581 (2)0.0512 (8)
H520.01400.12700.88340.061*
C530.0759 (4)0.1116 (3)0.7940 (2)0.0590 (9)
H530.01080.06850.77690.071*
C540.2042 (5)0.1402 (3)0.7555 (2)0.0654 (10)
H540.20370.11740.71190.078*
C550.3335 (5)0.2025 (3)0.7812 (2)0.0658 (10)
H550.42120.22070.75560.079*
C560.3337 (4)0.2382 (3)0.8448 (2)0.0524 (8)
H560.42090.28170.86110.063*
C610.3002 (3)0.1526 (2)1.05223 (18)0.0392 (7)
C620.3049 (4)0.0577 (3)1.0440 (2)0.0542 (9)
H620.26480.04240.99630.065*
C630.3694 (5)0.0147 (3)1.1068 (2)0.0696 (11)
H630.37000.07891.10150.084*
C640.4319 (4)0.0076 (3)1.1765 (2)0.0632 (10)
H640.47680.04061.21800.076*
C650.4280 (5)0.1006 (3)1.1847 (2)0.0688 (11)
H650.46920.11531.23250.083*
C660.3637 (4)0.1737 (3)1.1232 (2)0.0551 (9)
H660.36310.23741.12960.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04979 (16)0.03807 (14)0.0748 (2)0.00268 (11)0.00765 (13)0.01311 (13)
Ag20.04678 (15)0.03340 (13)0.06182 (17)0.00289 (10)0.00090 (12)0.00901 (11)
Cl10.0483 (5)0.0784 (6)0.0510 (5)0.0104 (4)0.0062 (4)0.0153 (4)
Cl20.0403 (4)0.0520 (5)0.0485 (5)0.0089 (3)0.0058 (3)0.0095 (4)
P10.0429 (4)0.0348 (4)0.0514 (5)0.0040 (3)0.0009 (4)0.0100 (4)
P20.0322 (4)0.0296 (4)0.0454 (5)0.0046 (3)0.0019 (3)0.0078 (3)
N10.0519 (17)0.0442 (16)0.0566 (18)0.0153 (13)0.0060 (14)0.0115 (13)
N20.0563 (17)0.0388 (14)0.0472 (16)0.0181 (12)0.0025 (13)0.0104 (12)
C10.053 (2)0.0410 (19)0.077 (3)0.0055 (16)0.0042 (19)0.0007 (17)
C20.0427 (18)0.0443 (19)0.068 (2)0.0069 (15)0.0014 (16)0.0042 (16)
C30.0412 (16)0.0386 (16)0.0449 (18)0.0114 (13)0.0023 (14)0.0113 (13)
C40.0414 (18)0.049 (2)0.068 (2)0.0087 (15)0.0081 (17)0.0046 (17)
C50.0434 (19)0.067 (2)0.070 (2)0.0206 (18)0.0038 (17)0.016 (2)
C60.0452 (18)0.0458 (18)0.056 (2)0.0146 (15)0.0048 (16)0.0110 (16)
C70.0448 (18)0.0420 (17)0.0492 (19)0.0092 (14)0.0151 (15)0.0024 (14)
C80.0414 (16)0.0339 (15)0.0425 (17)0.0083 (12)0.0048 (13)0.0115 (13)
C90.0489 (19)0.0449 (19)0.062 (2)0.0109 (15)0.0210 (17)0.0037 (16)
C100.068 (2)0.0412 (18)0.053 (2)0.0122 (17)0.0211 (18)0.0005 (15)
C110.0536 (19)0.0456 (18)0.0419 (18)0.0091 (15)0.0022 (15)0.0141 (14)
C120.058 (2)0.078 (3)0.055 (2)0.020 (2)0.0035 (18)0.022 (2)
C130.079 (3)0.093 (3)0.063 (3)0.045 (3)0.022 (2)0.034 (2)
C140.132 (4)0.056 (3)0.056 (3)0.036 (3)0.020 (3)0.018 (2)
C150.111 (4)0.051 (2)0.053 (2)0.002 (2)0.008 (2)0.0067 (18)
C160.071 (2)0.049 (2)0.053 (2)0.0042 (18)0.0074 (18)0.0124 (17)
C210.0366 (16)0.0446 (18)0.052 (2)0.0065 (13)0.0017 (14)0.0108 (15)
C220.076 (3)0.054 (2)0.053 (2)0.0228 (19)0.0103 (19)0.0001 (18)
C230.091 (3)0.086 (3)0.048 (2)0.024 (3)0.014 (2)0.007 (2)
C240.080 (3)0.080 (3)0.066 (3)0.019 (2)0.020 (2)0.026 (2)
C250.086 (3)0.060 (2)0.081 (3)0.020 (2)0.022 (2)0.020 (2)
C260.068 (2)0.0422 (19)0.057 (2)0.0104 (17)0.0109 (18)0.0065 (16)
C310.0426 (17)0.0395 (17)0.0458 (18)0.0078 (13)0.0025 (14)0.0072 (14)
C320.064 (2)0.065 (2)0.057 (2)0.0107 (19)0.0088 (19)0.0252 (19)
C330.075 (3)0.089 (3)0.081 (3)0.021 (3)0.033 (2)0.024 (3)
C340.049 (2)0.088 (3)0.065 (3)0.017 (2)0.0140 (19)0.007 (2)
C350.0456 (19)0.065 (2)0.059 (2)0.0056 (17)0.0021 (17)0.0114 (18)
C360.0433 (18)0.0493 (19)0.059 (2)0.0103 (15)0.0003 (15)0.0168 (16)
C410.0366 (15)0.0364 (15)0.0501 (19)0.0047 (12)0.0034 (13)0.0181 (14)
C420.0432 (18)0.0450 (18)0.064 (2)0.0134 (14)0.0007 (16)0.0131 (16)
C430.048 (2)0.071 (3)0.089 (3)0.0266 (19)0.009 (2)0.035 (2)
C440.0371 (18)0.085 (3)0.089 (3)0.0070 (19)0.0128 (19)0.046 (3)
C450.050 (2)0.068 (3)0.070 (3)0.0022 (18)0.0215 (19)0.019 (2)
C460.0411 (17)0.0444 (18)0.065 (2)0.0060 (14)0.0097 (16)0.0128 (16)
C510.0378 (15)0.0311 (14)0.0425 (17)0.0092 (12)0.0017 (13)0.0035 (12)
C520.0418 (17)0.051 (2)0.057 (2)0.0059 (15)0.0044 (15)0.0155 (16)
C530.067 (2)0.052 (2)0.056 (2)0.0120 (18)0.0065 (19)0.0201 (17)
C540.092 (3)0.060 (2)0.047 (2)0.024 (2)0.004 (2)0.0149 (18)
C550.069 (3)0.068 (3)0.061 (2)0.018 (2)0.024 (2)0.008 (2)
C560.0443 (18)0.052 (2)0.053 (2)0.0082 (15)0.0091 (16)0.0051 (16)
C610.0295 (14)0.0334 (15)0.0488 (18)0.0060 (11)0.0051 (13)0.0046 (13)
C620.063 (2)0.0381 (17)0.055 (2)0.0130 (15)0.0066 (17)0.0100 (15)
C630.081 (3)0.0387 (19)0.079 (3)0.0216 (19)0.008 (2)0.0071 (18)
C640.058 (2)0.054 (2)0.061 (2)0.0197 (18)0.0008 (18)0.0072 (18)
C650.072 (3)0.083 (3)0.049 (2)0.030 (2)0.0130 (19)0.017 (2)
C660.061 (2)0.054 (2)0.052 (2)0.0216 (17)0.0071 (17)0.0181 (16)
Geometric parameters (Å, º) top
Ag1—P12.4069 (9)C22—H220.9300
Ag1—N12.430 (3)C23—C241.371 (6)
Ag1—Cl12.5709 (10)C23—H230.9300
Ag1—Cl1i2.6639 (10)C24—C251.376 (6)
Ag2—P22.4162 (9)C24—H240.9300
Ag2—N22.386 (3)C25—C261.376 (5)
Ag2—Cl22.6111 (9)C25—H250.9300
Ag2—Cl2ii2.6809 (10)C26—H260.9300
Ag2—Ag2ii3.3292 (6)C31—C361.373 (4)
Cl1—Ag1i2.6639 (11)C31—C321.392 (5)
Cl2—Ag2ii2.6809 (10)C32—C331.387 (5)
P1—C311.830 (3)C32—H320.9300
P1—C111.833 (3)C33—C341.384 (6)
P1—C211.836 (4)C33—H330.9300
P2—C411.821 (3)C34—C351.355 (6)
P2—C511.825 (3)C34—H340.9300
P2—C611.829 (3)C35—C361.388 (5)
N1—C51.322 (5)C35—H350.9300
N1—C11.336 (4)C36—H360.9300
N2—C101.321 (4)C41—C461.378 (4)
N2—C61.336 (4)C41—C421.387 (4)
C1—C21.381 (5)C42—C431.386 (5)
C1—H10.9300C42—H420.9300
C2—C31.375 (4)C43—C441.378 (6)
C2—H20.9300C43—H430.9300
C3—C41.394 (4)C44—C451.376 (5)
C3—C81.485 (4)C44—H440.9300
C4—C51.384 (5)C45—C461.384 (5)
C4—H40.9300C45—H450.9300
C5—H50.9300C46—H460.9300
C6—C71.381 (4)C51—C561.393 (4)
C6—H60.9300C51—C521.394 (4)
C7—C81.383 (4)C52—C531.380 (5)
C7—H70.9300C52—H520.9300
C8—C91.385 (4)C53—C541.368 (5)
C9—C101.380 (5)C53—H530.9300
C9—H90.9300C54—C551.374 (6)
C10—H100.9300C54—H540.9300
C11—C161.370 (5)C55—C561.379 (5)
C11—C121.395 (5)C55—H550.9300
C12—C131.396 (5)C56—H560.9300
C12—H120.9300C61—C661.382 (4)
C13—C141.364 (6)C61—C621.385 (4)
C13—H130.9300C62—C631.388 (5)
C14—C151.361 (6)C62—H620.9300
C14—H140.9300C63—C641.364 (5)
C15—C161.382 (5)C63—H630.9300
C15—H150.9300C64—C651.357 (6)
C16—H160.9300C64—H640.9300
C21—C261.377 (5)C65—C661.381 (5)
C21—C221.399 (5)C65—H650.9300
C22—C231.374 (6)C66—H660.9300
P1—Ag1—N1114.03 (7)C23—C22—C21120.4 (4)
P1—Ag1—Cl1130.08 (3)C23—C22—H22119.8
N1—Ag1—Cl195.47 (8)C21—C22—H22119.8
P1—Ag1—Cl1i112.23 (3)C24—C23—C22120.7 (4)
N1—Ag1—Cl1i103.72 (7)C24—C23—H23119.7
Cl1—Ag1—Cl1i97.37 (3)C22—C23—H23119.7
N2—Ag2—P2120.95 (7)C23—C24—C25119.3 (4)
N2—Ag2—Cl294.24 (7)C23—C24—H24120.3
P2—Ag2—Cl2124.50 (3)C25—C24—H24120.3
N2—Ag2—Cl2ii96.68 (7)C26—C25—C24120.4 (4)
P2—Ag2—Cl2ii113.34 (3)C26—C25—H25119.8
Cl2—Ag2—Cl2ii102.05 (2)C24—C25—H25119.8
N2—Ag2—Ag2ii98.72 (7)C25—C26—C21121.1 (4)
P2—Ag2—Ag2ii139.76 (2)C25—C26—H26119.5
Cl2—Ag2—Ag2ii51.96 (2)C21—C26—H26119.5
Cl2ii—Ag2—Ag2ii50.090 (19)C36—C31—C32118.6 (3)
Ag1—Cl1—Ag1i82.63 (3)C36—C31—P1123.4 (3)
Ag2—Cl2—Ag2ii77.95 (2)C32—C31—P1118.1 (3)
C31—P1—C11103.84 (15)C33—C32—C31120.7 (4)
C31—P1—C21103.95 (15)C33—C32—H32119.7
C11—P1—C21103.26 (15)C31—C32—H32119.7
C31—P1—Ag1112.39 (11)C34—C33—C32119.3 (4)
C11—P1—Ag1117.37 (11)C34—C33—H33120.4
C21—P1—Ag1114.55 (11)C32—C33—H33120.4
C41—P2—C51104.34 (14)C35—C34—C33120.4 (4)
C41—P2—C61104.46 (14)C35—C34—H34119.8
C51—P2—C61102.45 (14)C33—C34—H34119.8
C41—P2—Ag2111.14 (10)C34—C35—C36120.3 (4)
C51—P2—Ag2116.42 (10)C34—C35—H35119.8
C61—P2—Ag2116.60 (10)C36—C35—H35119.8
C5—N1—C1116.4 (3)C31—C36—C35120.7 (3)
C5—N1—Ag1121.4 (2)C31—C36—H36119.6
C1—N1—Ag1122.2 (2)C35—C36—H36119.6
C10—N2—C6116.2 (3)C46—C41—C42118.4 (3)
C10—N2—Ag2121.3 (2)C46—C41—P2123.8 (2)
C6—N2—Ag2122.1 (2)C42—C41—P2117.7 (2)
N1—C1—C2123.6 (3)C43—C42—C41121.0 (3)
N1—C1—H1118.2C43—C42—H42119.5
C2—C1—H1118.2C41—C42—H42119.5
C3—C2—C1120.1 (3)C44—C43—C42119.6 (4)
C3—C2—H2119.9C44—C43—H43120.2
C1—C2—H2119.9C42—C43—H43120.2
C2—C3—C4116.3 (3)C45—C44—C43119.9 (3)
C2—C3—C8122.0 (3)C45—C44—H44120.0
C4—C3—C8121.7 (3)C43—C44—H44120.0
C5—C4—C3119.7 (3)C44—C45—C46120.0 (4)
C5—C4—H4120.1C44—C45—H45120.0
C3—C4—H4120.1C46—C45—H45120.0
N1—C5—C4123.8 (3)C41—C46—C45121.0 (3)
N1—C5—H5118.1C41—C46—H46119.5
C4—C5—H5118.1C45—C46—H46119.5
N2—C6—C7123.6 (3)C56—C51—C52118.6 (3)
N2—C6—H6118.2C56—C51—P2117.7 (2)
C7—C6—H6118.2C52—C51—P2123.7 (2)
C6—C7—C8119.7 (3)C53—C52—C51120.1 (3)
C6—C7—H7120.1C53—C52—H52120.0
C8—C7—H7120.1C51—C52—H52120.0
C7—C8—C9116.7 (3)C54—C53—C52120.6 (4)
C7—C8—C3121.6 (3)C54—C53—H53119.7
C9—C8—C3121.7 (3)C52—C53—H53119.7
C10—C9—C8119.4 (3)C53—C54—C55120.1 (4)
C10—C9—H9120.3C53—C54—H54120.0
C8—C9—H9120.3C55—C54—H54120.0
N2—C10—C9124.4 (3)C54—C55—C56120.2 (4)
N2—C10—H10117.8C54—C55—H55119.9
C9—C10—H10117.8C56—C55—H55119.9
C16—C11—C12119.1 (3)C55—C56—C51120.5 (3)
C16—C11—P1123.2 (3)C55—C56—H56119.8
C12—C11—P1117.7 (3)C51—C56—H56119.8
C11—C12—C13119.0 (4)C66—C61—C62118.5 (3)
C11—C12—H12120.5C66—C61—P2118.3 (2)
C13—C12—H12120.5C62—C61—P2123.1 (3)
C14—C13—C12120.5 (4)C61—C62—C63120.1 (3)
C14—C13—H13119.7C61—C62—H62120.0
C12—C13—H13119.7C63—C62—H62120.0
C15—C14—C13120.5 (4)C64—C63—C62120.6 (4)
C15—C14—H14119.8C64—C63—H63119.7
C13—C14—H14119.8C62—C63—H63119.7
C14—C15—C16119.7 (4)C65—C64—C63119.6 (3)
C14—C15—H15120.1C65—C64—H64120.2
C16—C15—H15120.1C63—C64—H64120.2
C11—C16—C15121.2 (4)C64—C65—C66121.0 (4)
C11—C16—H16119.4C64—C65—H65119.5
C15—C16—H16119.4C66—C65—H65119.5
C26—C21—C22118.1 (3)C65—C66—C61120.3 (3)
C26—C21—P1124.1 (3)C65—C66—H66119.9
C22—C21—P1117.8 (3)C61—C66—H66119.9
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl2iii0.932.823.669 (4)153
Symmetry code: (iii) x+1, y, z.
Selected bond lengths (Å) top
Ag1—P12.4069 (9)Ag2—P22.4162 (9)
Ag1—N12.430 (3)Ag2—N22.386 (3)
Ag1—Cl12.5709 (10)Ag2—Cl22.6111 (9)
Ag1—Cl1i2.6639 (10)Ag2—Cl2ii2.6809 (10)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl2iii0.932.823.669 (4)153
Symmetry code: (iii) x+1, y, z.
Acknowledgements top

This project was supported by the Natural Science Foundation of China (90922008).

references
References top

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hung-Low, F. & Klausmeyer, K. K. (2008). Inorg. Chim. Acta, 361, 1298–1310.

Lu, J., Crisci, G., Niu, T. & Jacobson, A. J. (1997). Inorg. Chem. 36, 796–801.

Mishra, L., Prajapati, R., Kimura, K. & Kobayashi, S. (2007). Inorg. Chem. Commun. 10, 1040–1044.

Pyykko, P. (2004). Angew. Chem., Int. Ed. Engl. 43, 4412–4456.

Sampanthar, J. T. & Vittal, J. J. (2000). Cryst. Eng. 3, 117–133.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sun, D., Luo, G.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2009). Acta Cryst. C65, m440–m442.

Yam, V. W. W. & Lo, K. K. W. (1999). Chem. Soc. Rev. 28, 323–334.

Zaworotko, M. J. (1994). Chem. Soc. Rev. 23, 283–288.