supplementary materials


xu5706 scheme

Acta Cryst. (2013). E69, o920    [ doi:10.1107/S1600536813013172 ]

5-Chloro-2-(4-fluorophenyl)-7-methyl-3-methylsulfinyl-1-benzofuran

H. D. Choi, P. J. Seo and U. Lee

Abstract top

In the title compound, C16H12ClFO2S, the 4-fluorophenyl ring makes a dihedral angle of 16.43 (4)° with the mean plane [r.m.s. deviation = 0.012 (1) Å] of the benzofuran fragment. In the crystal, molecules are linked by pairs of Cl...O contacts [3.1839 (12) Å] into inversion dimers, which are further packed into stacks along the b axis by weak C-H...O hydrogen bonds.

Comment top

As a part of our continuing study of 5-chloro-7-methyl-1-benzofuran derivatives containing [2-(4-chlorophenyl)-3-methylsulfinyl] (Choi et al., 2010a) and [3-ethylsulfinyl-2-(4-fluorophenyl)] (Choi et al., 2010b) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.012 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the 4-fluorophenyl ring and the mean plane of the benzofuran fragment is 16.43 (4)°. In the crystal structure (Fig. 2), molecules are connected by pairs of Cl···O halogen-bondings between the chlorine atom and the O atom of the SO unit [Cl1···O2ii = 3.1839 (12) Å, C4—Cl1···O2ii = 173.77 (6)°] (Politzer et al., 2007) into centrosymmetric dimers, which are further packed into stacks along the b axis by C—H···O hydrogen bonds (Table 1).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2010a,b). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

3-Chloroperoxybenzoic acid (77%, 291 mg, 1.3 mmol) was added in small portions to a stirred solution of 5-chloro-2-(4-fluorophenyl)-7-methyl-3-methylsulfanyl-1-benzofuran (368 mg, 1.2 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 5 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 73%, m.p. 462–463 K; Rf = 0.51 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and Cl···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x, y - 1, z; (ii) - x, - y + 1, - z; (iii) x, y + 1, z; (iv) -x, - y, - z.]
5-Chloro-2-(4-fluorophenyl)-7-methyl-3-methylsulfinyl-1-benzofuran top
Crystal data top
C16H12ClFO2SZ = 2
Mr = 322.77F(000) = 332
Triclinic, P1Dx = 1.522 Mg m3
Hall symbol: -P 1Melting point = 462–463 K
a = 7.5374 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7388 (3) ÅCell parameters from 5632 reflections
c = 10.7979 (4) Åθ = 2.4–28.4°
α = 106.902 (2)°µ = 0.43 mm1
β = 90.605 (2)°T = 173 K
γ = 110.598 (2)°Block, colourless
V = 704.24 (4) Å30.34 × 0.29 × 0.17 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3505 independent reflections
Radiation source: rotating anode3025 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.029
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.0°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.669, Tmax = 0.746l = 1414
13230 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.093H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.2009P]
where P = (Fo2 + 2Fc2)/3
3505 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H12ClFO2Sγ = 110.598 (2)°
Mr = 322.77V = 704.24 (4) Å3
Triclinic, P1Z = 2
a = 7.5374 (3) ÅMo Kα radiation
b = 9.7388 (3) ŵ = 0.43 mm1
c = 10.7979 (4) ÅT = 173 K
α = 106.902 (2)°0.34 × 0.29 × 0.17 mm
β = 90.605 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3505 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3025 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.746Rint = 0.029
13230 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.38 e Å3
S = 1.04Δρmin = 0.30 e Å3
3505 reflectionsAbsolute structure: ?
192 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06877 (6)0.24551 (4)0.05566 (3)0.03248 (11)
S10.31257 (5)0.77726 (4)0.43961 (3)0.02701 (11)
F10.57470 (16)0.77811 (14)1.05273 (9)0.0546 (3)
O10.18785 (14)0.36631 (11)0.48724 (9)0.0232 (2)
O20.16474 (17)0.78460 (13)0.35249 (12)0.0385 (3)
C10.25080 (19)0.58204 (15)0.43038 (13)0.0224 (3)
C20.15601 (19)0.45115 (15)0.31599 (13)0.0218 (3)
C30.0986 (2)0.43012 (16)0.18618 (13)0.0243 (3)
H30.12240.51500.15380.029*
C40.0055 (2)0.27967 (16)0.10758 (13)0.0247 (3)
C50.0335 (2)0.15197 (16)0.15232 (13)0.0248 (3)
H50.10000.05100.09390.030*
C60.02366 (19)0.17061 (15)0.28075 (13)0.0230 (3)
C70.11853 (19)0.32240 (15)0.35776 (13)0.0213 (3)
C80.26620 (19)0.52538 (16)0.53022 (13)0.0229 (3)
C90.0088 (2)0.03846 (16)0.33323 (15)0.0297 (3)
H9A0.11140.02280.34280.045*
H9B0.10420.05550.27280.045*
H9C0.05500.06170.41850.045*
C100.34642 (19)0.59406 (16)0.66751 (13)0.0242 (3)
C110.4761 (2)0.74628 (18)0.71675 (15)0.0308 (3)
H110.51370.80720.66010.037*
C120.5504 (2)0.8094 (2)0.84709 (16)0.0356 (3)
H120.63590.91390.88130.043*
C130.4979 (2)0.7178 (2)0.92584 (14)0.0351 (4)
C140.3715 (2)0.5673 (2)0.88172 (15)0.0343 (3)
H140.33820.50690.93900.041*
C150.2938 (2)0.50556 (18)0.75203 (14)0.0275 (3)
H150.20400.40230.72010.033*
C160.5173 (2)0.79549 (19)0.35447 (18)0.0394 (4)
H16A0.48140.71530.26910.059*
H16B0.61640.78360.40520.059*
H16C0.56650.89760.34240.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0459 (2)0.0299 (2)0.01946 (17)0.01465 (16)0.00394 (14)0.00412 (14)
S10.0368 (2)0.01850 (17)0.02544 (19)0.01193 (14)0.00111 (14)0.00443 (14)
F10.0573 (7)0.0654 (8)0.0226 (5)0.0083 (6)0.0117 (5)0.0057 (5)
O10.0287 (5)0.0202 (5)0.0203 (5)0.0094 (4)0.0008 (4)0.0055 (4)
O20.0474 (7)0.0327 (6)0.0430 (7)0.0214 (5)0.0013 (5)0.0151 (5)
C10.0264 (6)0.0189 (6)0.0216 (6)0.0099 (5)0.0005 (5)0.0041 (5)
C20.0237 (6)0.0194 (6)0.0227 (6)0.0094 (5)0.0014 (5)0.0056 (5)
C30.0309 (7)0.0220 (7)0.0220 (6)0.0120 (6)0.0015 (5)0.0074 (5)
C40.0295 (7)0.0265 (7)0.0193 (6)0.0131 (6)0.0005 (5)0.0056 (5)
C50.0268 (7)0.0200 (6)0.0245 (7)0.0086 (5)0.0001 (5)0.0030 (5)
C60.0248 (6)0.0204 (6)0.0254 (7)0.0104 (5)0.0038 (5)0.0071 (5)
C70.0241 (6)0.0220 (6)0.0193 (6)0.0106 (5)0.0008 (5)0.0062 (5)
C80.0233 (6)0.0211 (6)0.0236 (6)0.0092 (5)0.0015 (5)0.0046 (5)
C90.0391 (8)0.0206 (7)0.0304 (7)0.0110 (6)0.0050 (6)0.0094 (6)
C100.0232 (6)0.0284 (7)0.0214 (6)0.0125 (5)0.0009 (5)0.0051 (5)
C110.0301 (7)0.0312 (8)0.0261 (7)0.0066 (6)0.0005 (6)0.0078 (6)
C120.0315 (8)0.0346 (8)0.0293 (8)0.0058 (6)0.0039 (6)0.0018 (7)
C130.0325 (8)0.0472 (10)0.0194 (7)0.0135 (7)0.0043 (6)0.0035 (6)
C140.0362 (8)0.0429 (9)0.0261 (7)0.0151 (7)0.0017 (6)0.0136 (7)
C150.0287 (7)0.0293 (7)0.0250 (7)0.0120 (6)0.0014 (5)0.0078 (6)
C160.0399 (9)0.0303 (8)0.0474 (10)0.0098 (7)0.0114 (7)0.0153 (7)
Geometric parameters (Å, º) top
Cl1—C41.7432 (14)C6—C91.4975 (18)
Cl1—O2i3.1839 (12)C8—C101.4597 (19)
S1—O21.4848 (11)C9—H9A0.9800
S1—C11.7628 (13)C9—H9B0.9800
S1—C161.7863 (17)C9—H9C0.9800
F1—C131.3541 (17)C10—C111.395 (2)
O1—C71.3749 (15)C10—C151.399 (2)
O1—C81.3771 (16)C11—C121.382 (2)
C1—C81.3669 (18)C11—H110.9500
C1—C21.4443 (19)C12—C131.370 (2)
C2—C71.3920 (18)C12—H120.9500
C2—C31.3971 (18)C13—C141.373 (2)
C3—C41.379 (2)C14—C151.382 (2)
C3—H30.9500C14—H140.9500
C4—C51.4004 (19)C15—H150.9500
C5—C61.3884 (19)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—C71.3845 (19)C16—H16C0.9800
C4—Cl1—O2i173.77 (6)C6—C9—H9B109.5
O2—S1—C1107.35 (7)H9A—C9—H9B109.5
O2—S1—C16106.18 (8)C6—C9—H9C109.5
C1—S1—C1697.46 (7)H9A—C9—H9C109.5
C7—O1—C8106.81 (10)H9B—C9—H9C109.5
C8—C1—C2107.29 (12)C11—C10—C15118.93 (13)
C8—C1—S1127.30 (11)C11—C10—C8121.50 (13)
C2—C1—S1125.16 (10)C15—C10—C8119.56 (13)
C7—C2—C3119.26 (12)C12—C11—C10120.69 (14)
C7—C2—C1104.92 (12)C12—C11—H11119.7
C3—C2—C1135.81 (12)C10—C11—H11119.7
C4—C3—C2116.44 (12)C13—C12—C11118.45 (15)
C4—C3—H3121.8C13—C12—H12120.8
C2—C3—H3121.8C11—C12—H12120.8
C3—C4—C5123.30 (13)F1—C13—C12118.53 (15)
C3—C4—Cl1118.71 (10)F1—C13—C14118.54 (15)
C5—C4—Cl1117.99 (11)C12—C13—C14122.93 (14)
C6—C5—C4121.04 (13)C13—C14—C15118.52 (14)
C6—C5—H5119.5C13—C14—H14120.7
C4—C5—H5119.5C15—C14—H14120.7
C7—C6—C5114.78 (12)C14—C15—C10120.46 (14)
C7—C6—C9121.71 (12)C14—C15—H15119.8
C5—C6—C9123.49 (13)C10—C15—H15119.8
O1—C7—C6124.18 (11)S1—C16—H16A109.5
O1—C7—C2110.65 (12)S1—C16—H16B109.5
C6—C7—C2125.16 (12)H16A—C16—H16B109.5
C1—C8—O1110.30 (12)S1—C16—H16C109.5
C1—C8—C10134.92 (13)H16A—C16—H16C109.5
O1—C8—C10114.78 (11)H16B—C16—H16C109.5
C6—C9—H9A109.5
O2—S1—C1—C8140.84 (13)C1—C2—C7—O11.49 (15)
C16—S1—C1—C8109.57 (14)C3—C2—C7—C61.2 (2)
O2—S1—C1—C232.66 (14)C1—C2—C7—C6178.13 (13)
C16—S1—C1—C276.94 (13)C2—C1—C8—O10.18 (15)
C8—C1—C2—C70.79 (15)S1—C1—C8—O1174.61 (10)
S1—C1—C2—C7173.79 (10)C2—C1—C8—C10179.48 (14)
C8—C1—C2—C3179.96 (15)S1—C1—C8—C106.1 (2)
S1—C1—C2—C35.4 (2)C7—O1—C8—C11.10 (14)
C7—C2—C3—C40.47 (19)C7—O1—C8—C10179.45 (11)
C1—C2—C3—C4178.61 (15)C1—C8—C10—C1117.7 (2)
C2—C3—C4—C50.6 (2)O1—C8—C10—C11161.60 (13)
C2—C3—C4—Cl1179.68 (10)C1—C8—C10—C15162.80 (15)
C3—C4—C5—C61.1 (2)O1—C8—C10—C1517.93 (18)
Cl1—C4—C5—C6179.22 (10)C15—C10—C11—C120.5 (2)
C4—C5—C6—C70.36 (19)C8—C10—C11—C12179.93 (14)
C4—C5—C6—C9178.16 (13)C10—C11—C12—C131.8 (2)
C8—O1—C7—C6178.00 (13)C11—C12—C13—F1178.17 (15)
C8—O1—C7—C21.63 (14)C11—C12—C13—C141.5 (3)
C5—C6—C7—O1179.67 (12)F1—C13—C14—C15179.72 (14)
C9—C6—C7—O11.1 (2)C12—C13—C14—C150.0 (2)
C5—C6—C7—C20.8 (2)C13—C14—C15—C101.3 (2)
C9—C6—C7—C2179.31 (13)C11—C10—C15—C141.0 (2)
C3—C2—C7—O1179.17 (11)C8—C10—C15—C14178.50 (13)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2ii0.982.523.2305 (17)129
Symmetry code: (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2i0.982.523.2305 (17)129.3
Symmetry code: (i) x, y1, z.
Acknowledgements top

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

references
References top

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o706.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o886.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.