supplementary materials


yk2091 scheme

Acta Cryst. (2013). E69, o821    [ doi:10.1107/S1600536813011495 ]

3-(2-Fluorophenylsulfinyl)-2,5,7-trimethyl-1-benzofuran

H. D. Choi, P. J. Seo and U. Lee

Abstract top

In the title compound, C17H15FO2S, the benzofuran ring system, being essentially planar, with an r.m.s. deviation from the least-squares plane of 0.009 (2) Å, makes a dihedral angle of 79.02 (5)° with the plane of the 2-fluorophenyl group. In the crystal, molecules are linked by pairs of weak C-H...O hydrogen bonds into centrosymmetric dimers.

Comment top

As a part of our continuing study of 2,5,7-trimethyl-1-benzofuran derivatives containing 4-fluorophenylsulfinyl (Choi et al., 2010) and 3-fluorophenylsulfinyl (Choi et al., 2011) substituents in 3-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.009 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 2-fluorophenyl ring and the mean plane of the benzofuran ring is 79.02 (5)°. In the crystal structure, molecules are connected by pairs of weak C—H..O hydrogen bonds into centrosymmetric dimers (Table 1).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2010, 2011).

Experimental top

3-Chloroperoxybenzoic acid (77%, 269 mg, 1.2 mmol) was added in small portions to a stirred solution of 3-(2-fluorophenylsulfanyl)-2,5,7-trimethyl-1-benzofuran (315 mg, 1.1 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colorless solid [yield 76%, m.p. 394–395 K; Rf = 0.46 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
3-(2-Fluorophenylsulfinyl)-2,5,7-trimethyl-1-benzofuran top
Crystal data top
C17H15FO2SZ = 2
Mr = 302.35F(000) = 316
Triclinic, P1Dx = 1.399 Mg m3
Hall symbol: -P 1Melting point = 394–395 K
a = 6.0969 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9279 (16) ÅCell parameters from 3261 reflections
c = 11.2209 (16) Åθ = 2.4–26.4°
α = 78.167 (10)°µ = 0.24 mm1
β = 83.72 (1)°T = 173 K
γ = 79.722 (11)°Block, colourless
V = 717.92 (19) Å30.22 × 0.13 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2533 independent reflections
Radiation source: rotating anode2028 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.042
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 1.9°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.640, Tmax = 0.746l = 1313
10389 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.099H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.4211P]
where P = (Fo2 + 2Fc2)/3
2533 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H15FO2Sγ = 79.722 (11)°
Mr = 302.35V = 717.92 (19) Å3
Triclinic, P1Z = 2
a = 6.0969 (10) ÅMo Kα radiation
b = 10.9279 (16) ŵ = 0.24 mm1
c = 11.2209 (16) ÅT = 173 K
α = 78.167 (10)°0.22 × 0.13 × 0.12 mm
β = 83.72 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2533 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2028 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.746Rint = 0.042
10389 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.22 e Å3
S = 1.05Δρmin = 0.27 e Å3
2533 reflectionsAbsolute structure: ?
193 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53792 (10)0.04652 (5)0.12189 (5)0.03178 (17)
F10.1918 (2)0.28030 (14)0.06722 (13)0.0503 (4)
O10.2735 (2)0.11435 (14)0.43943 (13)0.0326 (4)
O20.7672 (3)0.02603 (15)0.12725 (15)0.0427 (4)
C10.4627 (4)0.10282 (19)0.25824 (19)0.0281 (5)
C20.5593 (3)0.18749 (19)0.31335 (19)0.0271 (5)
C30.7316 (4)0.2583 (2)0.2813 (2)0.0304 (5)
H30.81940.25680.20610.037*
C40.7730 (4)0.3311 (2)0.3611 (2)0.0336 (5)
C50.6391 (4)0.3330 (2)0.4711 (2)0.0368 (6)
H50.66880.38450.52410.044*
C60.4664 (4)0.2636 (2)0.5060 (2)0.0346 (5)
C70.4356 (4)0.19125 (19)0.42355 (19)0.0288 (5)
C80.2952 (4)0.0620 (2)0.33726 (19)0.0299 (5)
C90.9605 (4)0.4073 (2)0.3309 (2)0.0440 (6)
H9A1.07490.36830.27560.066*
H9B1.02650.40940.40610.066*
H9C0.90260.49390.29120.066*
C100.3234 (5)0.2640 (3)0.6234 (2)0.0492 (7)
H10A0.16910.30100.60570.074*
H10B0.38000.31440.67250.074*
H10C0.32770.17690.66870.074*
C110.1356 (4)0.0245 (2)0.3341 (2)0.0366 (6)
H11A0.16040.05400.25620.055*
H11B0.01760.02060.34260.055*
H11C0.15840.09730.40140.055*
C120.5649 (4)0.1939 (2)0.02030 (19)0.0294 (5)
C130.3881 (4)0.2921 (2)0.0008 (2)0.0346 (5)
C140.4049 (4)0.4017 (2)0.0821 (2)0.0423 (6)
H140.28170.46870.09250.051*
C150.6056 (5)0.4119 (2)0.1500 (2)0.0446 (6)
H150.62110.48670.20850.053*
C160.7835 (4)0.3147 (2)0.1339 (2)0.0440 (6)
H160.92060.32270.18170.053*
C170.7641 (4)0.2053 (2)0.0484 (2)0.0357 (5)
H170.88760.13850.03720.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0403 (3)0.0285 (3)0.0280 (3)0.0103 (2)0.0039 (2)0.0080 (2)
F10.0343 (8)0.0617 (10)0.0483 (9)0.0033 (7)0.0032 (7)0.0023 (7)
O10.0354 (9)0.0332 (8)0.0275 (8)0.0073 (7)0.0059 (7)0.0048 (7)
O20.0483 (10)0.0361 (9)0.0379 (9)0.0035 (8)0.0052 (8)0.0067 (8)
C10.0319 (12)0.0261 (11)0.0257 (11)0.0066 (9)0.0011 (9)0.0037 (9)
C20.0319 (12)0.0233 (11)0.0245 (11)0.0028 (9)0.0011 (9)0.0027 (9)
C30.0317 (12)0.0270 (11)0.0307 (12)0.0039 (9)0.0004 (9)0.0033 (9)
C40.0373 (13)0.0235 (11)0.0391 (13)0.0023 (10)0.0096 (11)0.0024 (10)
C50.0505 (15)0.0259 (12)0.0358 (13)0.0007 (11)0.0128 (11)0.0097 (10)
C60.0440 (14)0.0291 (12)0.0276 (12)0.0012 (10)0.0051 (10)0.0030 (10)
C70.0327 (12)0.0240 (11)0.0278 (12)0.0032 (9)0.0008 (9)0.0025 (9)
C80.0342 (12)0.0277 (11)0.0270 (11)0.0043 (9)0.0013 (9)0.0047 (9)
C90.0496 (15)0.0326 (13)0.0524 (16)0.0118 (11)0.0112 (12)0.0057 (12)
C100.0671 (18)0.0478 (15)0.0320 (14)0.0038 (13)0.0026 (12)0.0138 (12)
C110.0349 (13)0.0336 (12)0.0411 (14)0.0109 (10)0.0023 (11)0.0047 (11)
C120.0374 (12)0.0309 (11)0.0232 (11)0.0120 (10)0.0001 (9)0.0080 (9)
C130.0356 (13)0.0423 (14)0.0280 (12)0.0100 (11)0.0009 (10)0.0087 (10)
C140.0545 (16)0.0352 (13)0.0369 (14)0.0031 (12)0.0116 (12)0.0055 (11)
C150.0632 (18)0.0378 (14)0.0334 (14)0.0194 (13)0.0013 (12)0.0003 (11)
C160.0510 (16)0.0504 (15)0.0334 (13)0.0245 (13)0.0090 (12)0.0067 (12)
C170.0386 (13)0.0374 (13)0.0329 (13)0.0105 (11)0.0038 (10)0.0103 (10)
Geometric parameters (Å, º) top
S1—O21.4800 (17)C9—H9A0.9800
S1—C11.750 (2)C9—H9B0.9800
S1—C121.794 (2)C9—H9C0.9800
F1—C131.351 (3)C10—H10A0.9800
O1—C81.367 (3)C10—H10B0.9800
O1—C71.382 (3)C10—H10C0.9800
C1—C81.353 (3)C11—H11A0.9800
C1—C21.447 (3)C11—H11B0.9800
C2—C71.380 (3)C11—H11C0.9800
C2—C31.388 (3)C12—C171.376 (3)
C3—C41.383 (3)C12—C131.380 (3)
C3—H30.9500C13—C141.370 (3)
C4—C51.405 (3)C14—C151.378 (4)
C4—C91.501 (3)C14—H140.9500
C5—C61.383 (3)C15—C161.374 (4)
C5—H50.9500C15—H150.9500
C6—C71.381 (3)C16—C171.386 (3)
C6—C101.498 (3)C16—H160.9500
C8—C111.480 (3)C17—H170.9500
O2—S1—C1108.67 (10)H9A—C9—H9C109.5
O2—S1—C12105.39 (10)H9B—C9—H9C109.5
C1—S1—C1299.10 (10)C6—C10—H10A109.5
C8—O1—C7106.29 (16)C6—C10—H10B109.5
C8—C1—C2107.28 (18)H10A—C10—H10B109.5
C8—C1—S1121.35 (17)C6—C10—H10C109.5
C2—C1—S1131.27 (16)H10A—C10—H10C109.5
C7—C2—C3119.3 (2)H10B—C10—H10C109.5
C7—C2—C1104.71 (18)C8—C11—H11A109.5
C3—C2—C1136.0 (2)C8—C11—H11B109.5
C4—C3—C2118.6 (2)H11A—C11—H11B109.5
C4—C3—H3120.7C8—C11—H11C109.5
C2—C3—H3120.7H11A—C11—H11C109.5
C3—C4—C5119.6 (2)H11B—C11—H11C109.5
C3—C4—C9120.3 (2)C17—C12—C13118.7 (2)
C5—C4—C9120.1 (2)C17—C12—S1118.60 (18)
C6—C5—C4123.4 (2)C13—C12—S1122.49 (17)
C6—C5—H5118.3F1—C13—C14118.8 (2)
C4—C5—H5118.3F1—C13—C12118.7 (2)
C7—C6—C5114.3 (2)C14—C13—C12122.5 (2)
C7—C6—C10121.8 (2)C13—C14—C15118.1 (2)
C5—C6—C10123.9 (2)C13—C14—H14120.9
C2—C7—C6124.8 (2)C15—C14—H14120.9
C2—C7—O1110.78 (18)C16—C15—C14120.6 (2)
C6—C7—O1124.4 (2)C16—C15—H15119.7
C1—C8—O1110.95 (19)C14—C15—H15119.7
C1—C8—C11133.3 (2)C15—C16—C17120.4 (2)
O1—C8—C11115.71 (19)C15—C16—H16119.8
C4—C9—H9A109.5C17—C16—H16119.8
C4—C9—H9B109.5C12—C17—C16119.6 (2)
H9A—C9—H9B109.5C12—C17—H17120.2
C4—C9—H9C109.5C16—C17—H17120.2
O2—S1—C1—C8114.62 (19)C8—O1—C7—C20.3 (2)
C12—S1—C1—C8135.63 (19)C8—O1—C7—C6178.7 (2)
O2—S1—C1—C261.2 (2)C2—C1—C8—O10.5 (2)
C12—S1—C1—C248.6 (2)S1—C1—C8—O1177.20 (14)
C8—C1—C2—C70.7 (2)C2—C1—C8—C11180.0 (2)
S1—C1—C2—C7176.90 (17)S1—C1—C8—C113.3 (4)
C8—C1—C2—C3179.6 (2)C7—O1—C8—C10.2 (2)
S1—C1—C2—C33.3 (4)C7—O1—C8—C11179.71 (18)
C7—C2—C3—C40.3 (3)O2—S1—C12—C1711.7 (2)
C1—C2—C3—C4179.4 (2)C1—S1—C12—C17124.08 (18)
C2—C3—C4—C50.8 (3)O2—S1—C12—C13173.87 (18)
C2—C3—C4—C9178.9 (2)C1—S1—C12—C1361.5 (2)
C3—C4—C5—C60.9 (3)C17—C12—C13—F1179.23 (19)
C9—C4—C5—C6178.8 (2)S1—C12—C13—F14.8 (3)
C4—C5—C6—C70.1 (3)C17—C12—C13—C141.6 (3)
C4—C5—C6—C10179.6 (2)S1—C12—C13—C14175.97 (18)
C3—C2—C7—C61.4 (3)F1—C13—C14—C15179.4 (2)
C1—C2—C7—C6178.4 (2)C12—C13—C14—C151.4 (4)
C3—C2—C7—O1179.60 (18)C13—C14—C15—C160.4 (4)
C1—C2—C7—O10.6 (2)C14—C15—C16—C170.4 (4)
C5—C6—C7—C21.3 (3)C13—C12—C17—C160.7 (3)
C10—C6—C7—C2179.2 (2)S1—C12—C17—C16175.30 (18)
C5—C6—C7—O1179.88 (19)C15—C16—C17—C120.3 (4)
C10—C6—C7—O10.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.952.473.308 (3)148
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.952.473.308 (3)147.7
Symmetry code: (i) x+2, y, z.
Acknowledgements top

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

references
References top

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o472.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1468.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.