organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-(Naphthalen-1-yl)isophthalic aciddimethyl sulfoxide-water (2/1/2)

Antje Vetter, Wilhelm Seichter and Edwin Weber*

Institut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany Correspondence e-mail: Edwin.Weber@chemie.tu-freiberg.de

Received 17 April 2013; accepted 6 May 2013

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.004 Å; R factor = 0.045; wR factor = 0.100; data-to-parameter ratio = 16.2.

The asymmetric unit of the title compound, 2C₁₈H₁₂O₄.-C₂H₆OS·2H₂O, consists of four crystallographically independent molecules of 5-(naphthalen-1-yl)isophthalic acid, two dimethyl sulfoxide and four water molecules. The dihedral angles formed by the the planes of the aromatic fragments of the organic molecules range from 57.4 (1) to 59.1 (1) $^{\circ}$. In the crystal, multiple $O-H \cdots O$ hydrogen bonds link the water molecules with the carbonyl and sulfoxide groups, giving rise to double ribbons along the *b*-axis direction.

Related literature

For preparative methods used for the synthesis of the title compound, see: Broutin & Colobert (2005); Mazik & König (2006); Miyaura et al. (1981). For the structure of isophthalic acid, see: Derissen (1974). For hydrogen-bonding patterns, see: Bernstein et al. (1995); Burrows (2004). For π - π stacking interactions, see: James (2004). For C-H···O interactions, see: Desiraju & Steiner (1999). For organic crystal engineering aspects, see: Tiekink et al. (2010).

Experimental

Crystal data

$2C_{18}H_{12}O_4 \cdot C_2H_6OS \cdot 2H_2O$	c = 25.4682 (15) Å
$M_r = 698.72$	$\alpha = 95.780 \ (3)^{\circ}$
Triclinic, P1	$\beta = 95.669 \ (3)^{\circ}$
a = 6.6842 (4) Å	$\gamma = 90.028 \ (3)^{\circ}$
b = 9.6173 (6) Å	V = 1620.82 (17) Å

Z = 2Mo $K\alpha$ radiation $\mu = 0.17 \text{ mm}^{-1}$

Data collection

Bruker Kappa APEXII CCD diffractometer 39842 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.100$ S = 1.0415284 reflections 945 parameters 8 restraints

T = 93 K $0.18 \times 0.17 \times 0.09 \; \rm mm$

15284 independent reflections 12600 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.043$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}} = 0.31 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 7387 Friedel pairs Flack parameter: -0.03(5)

Table 1		
Hydrogen-bond geometry	(Å,	°)

$D-\mathrm{H}\cdots A$	D-H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots O1W^i$	0.84	1.72	2.559 (2)	175
$O1B-H1B\cdots O3W$	0.84	1.74	2.573 (2)	168
$O2A - H2A \cdots O4A^{ii}$	0.84	1.82	2.583 (2)	151
$O2C-H2C\cdots O4C^{ii}$	0.84	1.81	2.584 (2)	152
$O3A - H3A \cdots O2W^{iii}$	0.84	1.73	2.565 (3)	174
$O3C - H3C \cdots O4W$	0.84	1.72	2.561 (2)	176
$O4-H4\cdots O2^{iii}$	0.84	1.81	2.591 (2)	154
$O4B - H4B \cdot \cdot \cdot O2B^{iii}$	0.84	1.81	2.578 (2)	150
$O1W - H1W1 \cdots O1H^{iv}$	0.85 (3)	1.92 (3)	2.716 (3)	155 (3)
$O1W - H2W1 \cdots O3^{v}$	0.85 (3)	2.04 (3)	2.858 (2)	162 (3)
$O2W-H1W2\cdots O1G^{vi}$	0.85 (3)	1.91 (3)	2.742 (3)	168 (3)
$O2W - H2W2 \cdots O1A$	0.85 (2)	2.03 (2)	2.879 (2)	174 (3)
$O3W-H1W3\cdots O1G^{vii}$	0.85 (2)	1.85 (2)	2.680 (3)	165 (3)
$O3W - H2W3 \cdots O3B^{ii}$	0.85 (2)	1.98 (2)	2.824 (2)	170 (3)
$O4W-H1W4\cdots O1H^{vii}$	0.85 (2)	1.84 (2)	2.656 (3)	162 (3)
$O4W-H2W4\cdots O1C^{iii}$	0.86 (3)	1.96 (3)	2.808 (2)	172 (3)

Symmetry codes: (i) x - 1, y + 1, z; (ii) x, y + 1, z; (iii) x, y - 1, z; (iv) x, y, z + 1; (v) x + 1, y, z; (vi) x - 1, y, z + 1; (vii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank the Deutsche Forschungsgemeinschaft (DFG) for financial support (SPP 1362/1).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2092).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.
- Broutin, P.-E. & Colobert, F. (2005). Eur. J. Org. Chem. pp. 1113-1128.
- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burrows, A. D. (2004). Struct. Bond. 108, 55-96.
- Derissen, J. L. (1974). Acta Cryst. B30, 2764-2765.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2. New York: Oxford University Press Inc. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- James, S. L. (2004). Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 1093–1099. Boca Raton: CRC Press.
 Mazik, M. & König, A. (2006). J. Org. Chem. 71, 7854–7857.
 Miyaura, N., Yanagi, T. & Suzuki, A. (1981). Synth. Commun. 11, 513–519.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Tiekink, E. R. T., Vittal, J. J. & Zaworotko, M. J. (2010). Editors. Organic Crystal Engineering. Chichester: Wiley.

supporting information

Acta Cryst. (2013). E69, o912-o913 [doi:10.1107/S1600536813012361]

5-(Naphthalen-1-yl)isophthalic acid-dimethyl sulfoxide-water (2/1/2)

Antje Vetter, Wilhelm Seichter and Edwin Weber

S1. Comment

In the solid state, isophthalic acid creates an interesting bond stabilized tape structure (Derissen, 1974) with the dimer motif of carboxylic acids (Burrows, 2004) showing particular effectiveness. Substitution of the isophthalic acid with a naphthalene unit that may activate competing π -stacking behaviour in the supramolecular organization (James, 2004) is a challenging question regarding aspects of crystal engineering (Tiekink et al., 2010). This led us to study the crystal structure of a corresponding compound which proved to be a mixed DMSO solvate-hydrate species of 2:1:2 (compound:DMSO:H₂O) stoichiometry containing four crystallographically independent compound molecules, two DMSO and four water molecules in the asymmetric part of the unit cell (Fig. 1). Regarding the conformation of the naphthyl substituted isophthalic acid molecule, the dihedral angles formed by the planes of the aromatic moieties range from 57.4 (1) to 59.1 (1) $^{\circ}$; the isophthalic acid fragments of the molecules are approximately planar. Due to the distinctive donor/acceptor character of the crystal components, the solid phase structure of the title compound is characterized by a complicated pattern of non-covalent intermolecular bonding. The crystal can be regarded as being constructed of molecular double layers extending parallel to the crystallographic ab plane (Fig. 2). The aromatic parts of the isophthalic acid molecules form the hydrophobic peripheral areas of the double layer structure, whereas the core region is defined by the polar molecule parts and solvent molecules. In this arrangement, the carboxyl groups and water molecules take part in formation of 10-membered cyclic motifs of O—H···O bonds [d(H···O) 1.81-1.82 Å]. Hence, instead of the conventional carboxylic acid dimer of the graph set $R_2^2(8)$ (Bernstein *et al.*, 1995), an expanded dimer following the graph set $R_3^{3}(10)$ is formed. Furthermore, the second hydrogen of each water molecule is engaged in coordination with DMSO molecules, the O atoms of which act as bifurcated acceptors $[d(H \cdots O) 1.85 (2)-1.92 (3) Å]$. A large number of relatively strong non- conventional hydrogen bonds of the C-H···O type (Desiraju & Steiner, 1999) $[d(H \cdots O) 2.47 (2) - 2.55 (3) Å]$ involving carboxylic and water O atoms complete the network of intermolecular interactions. Within the hydrophobic layer domains, the naphthyl residues of the molecules adopt a herringbone pattern, so that no marked arene based interlayer interactions can be observed. Consequently, only weak van der Waals forces stabilize the crystal packing in direction of the *c*-axis.

S2. Experimental

Preparation of the title compound was achieved by a Suzuki cross coupling reaction (Miyaura *et al.*, 1981) between 2-(naphthalen-1-yl)-1,3,2- dioxaborolane (Broutin & Colobert, 2005) (3.1 g, 9.5 mmol) in the presence of palladium(II) acetate (217 mg, 0.97 mmol) and potassium phosphate (3.0 g, 14.1 mmol) in 70 ml degassed tetrahydrofuran. The resulting mixture was heated to reflux for 6 h, then cooled to room temperature, quenched with water and filtered through celite. The aqueous phase was extracted with dichloromethane and dried over Na₂SO₄. Evaporation of the solvent and crystallization from ethanol yielded 1.20 g (41%) colourless needles with m.p. 421-422 K of the intermediate diester. This diester and powdered sodium hydroxid (5.0 g, 125 mmol) in methanol-water (50 ml, 1:1, v/v) was refluxed for 4 h.

After cooling to room temperature, the mixture was filtered and the filtrate acidified with aqueous hydrochloric acid. The precipitate which has formed was collected by suction filtration, washed with water, dissolved in ethanol-chloroform (1:1) and dried (Na₂SO₄). Evaporation of the solvent and crystallization from ethanol yielded 1.1 g (40%) of colourless crystals; m.p. > 593 K. IR (KBr) 3063, 2029, 1848, 1706, 1628, 1603, 805, 779, 763. ¹H NMR (400 MHz, D₆–DMSO) 7.54 - 7.66 (m, 4 H, naphthyl-H), 7.75 (d, ³J_{HH} = 8 Hz, 1 H, naphthyl-H), 8.05 (m, 2 H, naphthyl-H), 8.23 (s, 2 H, isophthalic acid-H), 8.59 (s, 1 H, isophthalic acid-H), 13.33 (br, 2 H, COOH). ¹³C NMR (100.6 MHz, D₆–DMSO) 124.7, 125.7, 126.3, 127.0, 127.4, 128.6, 128.7, 129.0, 130.6, 131.8, 133.5, 134.3, 137.6, 140.8, 166.5 (COOH). MS (EI) *m/z*: found - 292.1; calc. for C₁₈H₁₂O₄ - 292.25. Palladium(II) acetate was purchased from Aldrich. Melting point was measured on a hot stage microscope (Rapido, Dresden). IR, NMR (¹H, ¹³C) and mass (EI–MS) spectra were performed using Nicolet 510 FT–IR, Bruker Avance DPX 400 and Finnigan Mat 8200 instruments, respectively. Crystals of the title compound (DMSO solvate-dihydrate) suitable for X-ray structural analysis were grown by slow evaporating a solution of the material described above.

S3. Refinement

Aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å and U_{iso} = 1.2 U_{eq} (C).

Figure 1

Asymmetric unit of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view along the *a*-axis of the crystal packing of the title compound. Hydrogen bond interactions are presented as broken lines. Oxygen atoms are specified as dotted circles, sulfur atoms as shaded circles. Non-relevant hydrogen atoms are omitted.

5-(Naphthalen-1-yl)isophthalic acid-dimethyl sulfoxide-water (2/1/2)

Crystal data	
$2C_{18}H_{12}O_4 \cdot C_2H_6OS \cdot 2H_2O$	Z = 2
$M_r = 698.72$	F(000) = 732
Triclinic, P1	$D_{\rm x} = 1.432 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: P 1	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 6.6842 (4) Å	Cell parameters from 8379 reflections
b = 9.6173 (6) Å	$\theta = 2.2 - 30.6^{\circ}$
c = 25.4682 (15) Å	$\mu = 0.17 \text{ mm}^{-1}$
$\alpha = 95.780 \ (3)^{\circ}$	T = 93 K
$\beta = 95.669 \ (3)^{\circ}$	Rhombus, colourless
$\gamma = 90.028 \ (3)^{\circ}$	$0.18 \times 0.17 \times 0.09 \text{ mm}$
$V = 1620.82 (17) Å^3$	

Data collection

 Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 39842 measured reflections 15284 independent reflections 	12600 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 28.1^{\circ}, \ \theta_{min} = 1.6^{\circ}$ $h = -8 \rightarrow 8$ $k = -12 \rightarrow 12$ $l = -33 \rightarrow 33$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.100$ S = 1.04 15284 reflections 945 parameters 8 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0447P)^2 + 0.2447P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31$ e Å ⁻³ $\Delta\rho_{min} = -0.29$ e Å ⁻³ Absolute structure: Flack (1983), 7387 Friedel pairs Absolute structure parameter: -0.03 (5)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. Distances for O—H bonds of the water molecules were restraint of 0.85 (0.01) Angstroms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.0444 (3)	1.15517 (17)	0.93514 (7)	0.0183 (4)	
H1	-0.0530	1.2373	0.9494	0.027*	
02	0.0285 (3)	1.26400 (17)	0.86570 (7)	0.0166 (4)	
03	-0.0263 (3)	0.63317 (18)	0.92376 (7)	0.0181 (4)	
04	0.0604 (3)	0.52281 (17)	0.84729 (7)	0.0173 (4)	
H4	0.0412	0.4509	0.8624	0.026*	
C1	0.1036 (4)	0.8755 (2)	0.71638 (9)	0.0131 (5)	
C2	-0.0413 (4)	0.9361 (3)	0.68468 (10)	0.0160 (5)	
H2	-0.1476	0.9847	0.7004	0.019*	
C3	-0.0365 (4)	0.9282 (3)	0.62936 (10)	0.0179 (5)	
Н3	-0.1383	0.9716	0.6081	0.021*	
C4	0.1153 (4)	0.8578 (3)	0.60616 (10)	0.0171 (5)	
H4A	0.1160	0.8505	0.5687	0.021*	
C5	0.2709 (4)	0.7959 (2)	0.63727 (10)	0.0145 (5)	
C6	0.4338 (4)	0.7260 (3)	0.61436 (10)	0.0185 (5)	

H6	0.4354	0.7172	0.5769	0.022*
C7	0.5862 (4)	0.6718 (3)	0.64457 (11)	0.0217 (6)
H7	0.6929	0.6251	0.6283	0.026*
C8	0.5864 (4)	0.6849 (3)	0.70067 (10)	0.0193 (6)
H8	0.6946	0.6481	0.7219	0.023*
C9	0.4319 (4)	0.7502 (2)	0.72416 (10)	0.0158 (5)
H9	0.4346	0.7587	0.7617	0.019*
C10	0.2673 (4)	0.8055 (2)	0.69350 (10)	0.0130 (5)
C11	0.0816 (4)	0.8818 (2)	0.77422 (10)	0.0130 (5)
C12	0.0566 (4)	1.0103 (2)	0.80377 (9)	0.0133 (5)
H12	0.0621	1.0943	0.7872	0.016*
C13	0.0237 (4)	1.0165 (2)	0.85705 (10)	0.0120 (5)
C14	0.0126 (4)	0.8948 (2)	0.88178 (10)	0.0131 (5)
H14	-0.0120	0.8991	0.9180	0.016*
C15	0.0379 (4)	0.7662 (2)	0.85273 (10)	0.0130 (5)
C16	0.0729 (4)	0.7607 (2)	0.79979 (10)	0.0136 (5)
H16	0.0914	0.6726	0.7805	0.016*
C17	0.0031 (4)	1.1579 (3)	0.88623 (10)	0.0140 (5)
C18	0.0212 (4)	0.6353 (2)	0.87888 (10)	0.0132 (5)
O1A	0.4749 (3)	0.58077 (17)	0.92172 (7)	0.0176 (4)
O2A	0.5635 (3)	0.65134 (17)	0.84584 (7)	0.0172 (4)
H2A	0.5454	0.7311	0.8613	0.026*
O3A	0.4594 (3)	0.06583 (18)	0.93111 (7)	0.0174 (4)
H3A	0.4520	-0.0088	0.9454	0.026*
O4A	0.5295 (3)	-0.08045 (17)	0.86125 (7)	0.0169 (4)
C1A	0.5968 (4)	0.2372 (2)	0.71184 (10)	0.0142 (5)
C2A	0.4496 (4)	0.1661 (3)	0.67782 (10)	0.0166 (5)
H2A1	0.3429	0.1219	0.6920	0.020*
C3A	0.4543 (4)	0.1576 (3)	0.62245 (10)	0.0196 (6)
H3A1	0.3517	0.1077	0.5997	0.024*
C4A	0.6062 (4)	0.2212 (3)	0.60148 (10)	0.0179 (5)
H4A1	0.6051	0.2186	0.5641	0.022*
C5A	0.7651 (4)	0.2910(2)	0.63458 (10)	0.0153 (5)
C6A	0.9278 (4)	0.3532 (3)	0.61336 (11)	0.0211 (6)
H6A	0.9287	0.3503	0.5760	0.025*
C7A	1.0827 (4)	0.4170 (3)	0.64568 (11)	0.0229 (6)
H7A	1.1897	0.4593	0.6309	0.027*
C8A	1.0839 (4)	0.4202 (3)	0.70124 (11)	0.0204 (6)
H8A	1.1940	0.4625	0.7236	0.024*
C9A	0.9294 (4)	0.3635 (3)	0.72307 (10)	0.0168 (5)
H9A	0.9330	0.3672	0.7606	0.020*
C10A	0.7626 (4)	0.2987 (2)	0.69084 (10)	0.0135 (5)
C11A	0.5760 (4)	0.2556 (2)	0.77016 (10)	0.0128 (5)
C12A	0.5691 (4)	0.3900 (2)	0.79653 (10)	0.0136 (5)
H12A	0.5871	0.4688	0.7777	0.016*
C13A	0.5362 (4)	0.4105 (2)	0.84980 (10)	0.0127 (5)
C14A	0.5131 (4)	0.2966 (2)	0.87837 (10)	0.0131 (5)
H14A	0.4905	0.3103	0.9148	0.016*

C15A	0.5235 (4)	0.1616 (2)	0.85266 (10)	0.0128 (5)
C16A	0.5526 (4)	0.1418 (2)	0.79892 (10)	0.0140 (5)
H16A	0.5566	0.0496	0.7817	0.017*
C17A	0.5220 (4)	0.5552 (2)	0.87681 (10)	0.0135 (5)
C18A	0.5046 (4)	0.0373 (2)	0.88190 (10)	0.0133 (5)
O1B	0.6696 (3)	0.72004 (17)	0.17136 (7)	0.0164 (4)
H1B	0.6567	0.7946	0.1568	0.025*
O2B	0.7921 (3)	0.86549 (17)	0.24144 (7)	0.0156 (4)
O3B	0.6950 (3)	0.20477 (17)	0.17970 (7)	0.0165 (4)
O4B	0.8369 (3)	0.13335 (17)	0.25592 (7)	0.0158 (4)
H4B	0.7978	0.0542	0.2416	0.024*
C1B	0.9745 (4)	0.5465 (2)	0.39000 (9)	0.0132 (5)
C2B	0.8542 (4)	0.6176 (3)	0.42408 (10)	0.0164 (5)
H2B	0.7367	0.6619	0.4100	0.020*
C3B	0.9013 (4)	0.6265 (3)	0.47989 (11)	0.0197 (6)
H3B	0.8162	0.6767	0.5027	0.024*
C4B	1.0684 (4)	0.5630 (3)	0.50072 (10)	0.0179 (5)
H4B1	1.0961	0.5658	0.5381	0.022*
C5B	1.2014 (4)	0.4930 (3)	0.46748 (10)	0.0163 (5)
C6B	1.3807 (4)	0.4316 (3)	0.48856 (11)	0.0197 (6)
H6B	1.4107	0.4350	0.5259	0.024*
C7B	1.5110 (4)	0.3676 (3)	0.45596 (11)	0.0213 (6)
H7B	1.6296	0.3260	0.4708	0.026*
C8B	1.4708 (4)	0.3630 (3)	0.40047 (11)	0.0188 (6)
H8B	1.5632	0.3194	0.3781	0.023*
C9B	1.2992 (4)	0.4208 (2)	0.37855 (10)	0.0156 (5)
H9B	1.2746	0.4179	0.3411	0.019*
C10B	1.1573 (4)	0.4853 (2)	0.41101 (9)	0.0135 (5)
C11B	0.9094 (4)	0.5295 (2)	0.33200 (9)	0.0122 (5)
C12B	0.8653 (4)	0.6428 (2)	0.30312 (10)	0.0136 (5)
H12B	0.8844	0.7351	0.3201	0.016*
C13B	0.7935 (3)	0.6225 (2)	0.24962 (10)	0.0110 (5)
C14B	0.7634 (3)	0.4884 (2)	0.22378 (10)	0.0114 (5)
H14B	0.7123	0.4751	0.1875	0.014*
C15B	0.8097 (4)	0.3739 (2)	0.25216 (10)	0.0118 (5)
C16B	0.8828 (4)	0.3948 (2)	0.30538 (10)	0.0130 (5)
H16B	0.9154	0.3161	0.3242	0.016*
C17B	0.7521 (4)	0.7479 (2)	0.22060 (9)	0.0116 (5)
C18B	0.7735 (4)	0.2302 (2)	0.22478 (10)	0.0132 (5)
O1C	0.1944 (3)	1.14760 (17)	0.17794 (7)	0.0168 (4)
O2C	0.3329 (3)	1.25902 (17)	0.25475 (7)	0.0160 (4)
H2C	0.3049	1.3305	0.2391	0.024*
O3C	0.1643 (3)	0.62594 (17)	0.16752 (6)	0.0153 (4)
H3C	0.1382	0.5435	0.1544	0.023*
O4C	0.2889 (3)	0.51794 (17)	0.23747 (7)	0.0157 (4)
C1C	0.4779 (4)	0.9086 (2)	0.38610 (9)	0.0123 (5)
C2C	0.3567 (4)	0.8484 (2)	0.41795 (10)	0.0158 (5)
H2C1	0.2377	0.8004	0.4025	0.019*

C3C	0.4056 (4)	0.8562 (3)	0.47333 (10)	0.0182 (6)
H3C1	0.3208	0.8122	0.4947	0.022*
C4C	0.5741 (4)	0.9268 (3)	0.49644 (10)	0.0170 (5)
H4C	0.6027	0.9346	0.5339	0.020*
C5C	0.7072 (4)	0.9887 (3)	0.46510 (10)	0.0147 (5)
C6C	0.8870 (4)	1.0585 (3)	0.48780 (10)	0.0176 (5)
H6C	0.9179	1.0672	0.5252	0.021*
C7C	1.0161 (4)	1.1134 (3)	0.45698 (11)	0.0200 (6)
H7C	1.1345	1.1612	0.4730	0.024*
C8C	0.9738 (4)	1.0991 (3)	0.40126 (10)	0.0181 (5)
H8C	1.0659	1.1353	0.3798	0.022*
C9C	0.8014 (4)	1.0337 (2)	0.37795 (10)	0.0150 (5)
H9C	0.7752	1.0251	0.3404	0.018*
C10C	0.6601 (4)	0.9781 (2)	0.40893 (9)	0.0123 (5)
C11C	0.4120 (3)	0.9006 (2)	0.32818 (9)	0.0119 (5)
C12C	0.3846 (4)	1.0224 (2)	0.30269 (9)	0.0117 (5)
H12C	0.4178	1.1106	0.3219	0.014*
C13C	0.3094 (4)	1.0156 (2)	0.24968 (10)	0.0115 (5)
C14C	0.2617 (3)	0.8869 (2)	0.22096 (9)	0.0111 (5)
H14C	0.2086	0.8822	0.1848	0.013*
C15C	0.2925 (3)	0.7659 (2)	0.24564 (10)	0.0109 (5)
C16C	0.3660 (4)	0.7733 (2)	0.29906 (9)	0.0121 (5)
H16C	0.3847	0.6896	0.3157	0.015*
C17C	0.2729 (4)	1.1463 (2)	0.22324 (10)	0.0127 (5)
C18C	0.2487 (4)	0.6250 (2)	0.21663 (10)	0.0124 (5)
S 1	1.00718 (9)	0.89723 (6)	0.08375 (3)	0.01409 (13)
01G	1.2225 (3)	0.88624 (19)	0.06914 (7)	0.0208 (4)
C1G	0.8946 (4)	1.0283 (3)	0.04598 (11)	0.0233 (6)
H1G1	0.9449	1.1206	0.0615	0.035*
H1G2	0.7483	1.0243	0.0463	0.035*
H1G3	0.9288	1.0119	0.0093	0.035*
C2G	0.8784 (4)	0.7491 (3)	0.04824 (11)	0.0208 (6)
H2G1	0.9071	0.7420	0.0111	0.031*
H2G2	0.7334	0.7594	0.0501	0.031*
H2G3	0.9239	0.6643	0.0640	0.031*
S2	0.50038 (9)	0.40349 (6)	0.08343 (3)	0.01460 (13)
O1H	0.7177 (3)	0.40828 (19)	0.07026 (7)	0.0206 (4)
C1H	0.3754 (4)	0.5325 (3)	0.04717 (11)	0.0221 (6)
H1H1	0.4134	0.6257	0.0645	0.033*
H1H2	0.2297	0.5194	0.0462	0.033*
H1H3	0.4145	0.5234	0.0109	0.033*
C2H	0.3935 (4)	0.2518 (3)	0.04457 (11)	0.0243 (6)
H2H1	0.4359	0.2477	0.0087	0.036*
H2H2	0.2465	0.2563	0.0427	0.036*
H2H3	0.4393	0.1680	0.0610	0.036*
O1W	0.9185 (3)	0.40010 (18)	0.98237 (7)	0.0207 (4)
H1W1	0.829 (4)	0.414 (4)	1.0040 (12)	0.047 (11)*
H2W1	0.907 (5)	0.466 (3)	0.9622 (11)	0.046 (11)*
	/	\ - /		······································

O2W	0.4243 (3)	0.84838 (19)	0.98024 (7)	0.0217 (4)	
H1W2	0.349 (5)	0.853 (4)	1.0051 (11)	0.061 (13)*	
H2W2	0.431 (5)	0.7675 (18)	0.9634 (12)	0.041 (10)*	
O3W	0.5777 (3)	0.94182 (17)	0.12596 (7)	0.0151 (4)	
H1W3	0.458 (2)	0.936 (3)	0.1116 (11)	0.029 (9)*	
H2W3	0.598 (5)	1.0221 (18)	0.1433 (12)	0.039 (10)*	
O4W	0.0735 (3)	0.37916 (18)	0.12416 (7)	0.0155 (4)	
H1W4	-0.048 (2)	0.375 (3)	0.1109 (12)	0.036 (10)*	
H2W4	0.113 (5)	0.314 (3)	0.1433 (11)	0.037 (10)*	

Atomic displacement parameters $(Å^2)$

	<i>U</i> ¹¹	U^{22}	U^{33}	U ¹²	U ¹³	U ²³
01	0.0302 (11)	0.0112 (8)	0.0143 (9)	0.0033 (8)	0.0068 (8)	0.0009 (7)
O2	0.0228 (10)	0.0100 (8)	0.0183 (10)	0.0005 (7)	0.0067 (8)	0.0029 (7)
O3	0.0258 (10)	0.0152 (9)	0.0147 (9)	0.0012 (7)	0.0065 (8)	0.0042 (7)
O4	0.0285 (11)	0.0090 (8)	0.0152 (9)	-0.0001 (7)	0.0053 (8)	0.0021 (7)
C1	0.0156 (13)	0.0102 (11)	0.0133 (12)	-0.0025 (9)	0.0007 (10)	0.0005 (9)
C2	0.0163 (13)	0.0149 (12)	0.0172 (13)	0.0022 (10)	0.0021 (10)	0.0032 (10)
C3	0.0194 (14)	0.0194 (13)	0.0147 (13)	0.0004 (10)	-0.0020 (11)	0.0049 (10)
C4	0.0209 (14)	0.0188 (13)	0.0118 (12)	-0.0010 (10)	0.0019 (10)	0.0026 (10)
C5	0.0206 (13)	0.0107 (11)	0.0124 (12)	-0.0034 (9)	0.0036 (10)	0.0003 (9)
C6	0.0240 (14)	0.0179 (13)	0.0144 (13)	-0.0015 (11)	0.0066 (11)	0.0012 (10)
C7	0.0252 (15)	0.0174 (13)	0.0240 (14)	0.0026 (11)	0.0096 (12)	0.0014 (11)
C8	0.0167 (13)	0.0194 (13)	0.0229 (14)	0.0034 (10)	0.0010 (11)	0.0076 (11)
C9	0.0183 (13)	0.0152 (12)	0.0141 (13)	-0.0008 (10)	0.0009 (10)	0.0026 (10)
C10	0.0188 (13)	0.0080 (11)	0.0128 (12)	-0.0031 (9)	0.0032 (10)	0.0025 (9)
C11	0.0129 (12)	0.0140 (12)	0.0125 (12)	0.0000 (9)	0.0027 (9)	0.0029 (9)
C12	0.0146 (12)	0.0109 (11)	0.0142 (12)	-0.0007 (9)	-0.0015 (10)	0.0035 (9)
C13	0.0103 (12)	0.0109 (11)	0.0144 (12)	0.0002 (9)	-0.0004 (9)	0.0010 (9)
C14	0.0164 (13)	0.0131 (12)	0.0100 (12)	0.0003 (9)	0.0019 (10)	0.0015 (9)
C15	0.0147 (12)	0.0104 (11)	0.0142 (12)	-0.0001 (9)	0.0015 (10)	0.0026 (9)
C16	0.0165 (13)	0.0090 (11)	0.0149 (13)	0.0004 (9)	0.0007 (10)	0.0004 (9)
C17	0.0127 (12)	0.0151 (12)	0.0146 (13)	0.0024 (9)	0.0034 (10)	0.0015 (10)
C18	0.0115 (12)	0.0114 (12)	0.0157 (13)	-0.0011 (9)	-0.0013 (10)	-0.0005 (9)
O1A	0.0253 (10)	0.0128 (9)	0.0150 (9)	0.0003 (7)	0.0051 (8)	0.0001 (7)
O2A	0.0263 (10)	0.0090 (8)	0.0166 (9)	0.0005 (7)	0.0033 (8)	0.0009 (7)
O3A	0.0263 (10)	0.0132 (9)	0.0135 (9)	-0.0029 (7)	0.0054 (8)	0.0024 (7)
O4A	0.0231 (10)	0.0094 (8)	0.0188 (10)	0.0007 (7)	0.0050 (8)	0.0012 (7)
C1A	0.0187 (13)	0.0103 (11)	0.0139 (12)	0.0025 (9)	0.0025 (10)	0.0015 (9)
C2A	0.0192 (13)	0.0125 (12)	0.0187 (13)	-0.0003 (10)	0.0044 (11)	0.0023 (10)
C3A	0.0232 (15)	0.0151 (13)	0.0187 (14)	0.0004 (11)	-0.0009 (11)	-0.0035 (10)
C4A	0.0270 (15)	0.0154 (12)	0.0110 (12)	0.0035 (10)	0.0028 (11)	-0.0008 (10)
C5A	0.0231 (13)	0.0090 (11)	0.0142 (12)	0.0030 (10)	0.0045 (10)	0.0005 (9)
C6A	0.0259 (15)	0.0195 (13)	0.0198 (14)	0.0033 (11)	0.0091 (12)	0.0041 (11)
C7A	0.0229 (15)	0.0195 (13)	0.0281 (15)	-0.0008 (11)	0.0101 (12)	0.0037 (11)
C8A	0.0176 (14)	0.0176 (13)	0.0261 (15)	0.0015 (10)	0.0040 (11)	0.0007 (11)
C9A	0.0203 (14)	0.0155 (12)	0.0145 (13)	0.0022 (10)	0.0036 (11)	-0.0002(10)

C10A	0.0183 (13)	0.0086 (11)	0.0142 (12)	0.0041 (9)	0.0033 (10)	0.0020 (9)
C11A	0.0121 (12)	0.0129 (11)	0.0135 (12)	-0.0002(9)	0.0029 (10)	0.0006 (9)
C12A	0.0163 (13)	0.0097 (11)	0.0143 (12)	-0.0002(9)	-0.0016 (10)	0.0021 (9)
C13A	0.0123 (12)	0.0097 (11)	0.0160 (13)	0.0011 (9)	0.0008 (10)	0.0013 (9)
C14A	0.0153 (12)	0.0096 (11)	0.0145 (12)	0.0012 (9)	0.0023 (10)	0.0005 (9)
C15A	0.0104 (12)	0.0122 (11)	0.0161 (13)	0.0004 (9)	0.0001 (10)	0.0037 (9)
C16A	0.0128 (12)	0.0100 (11)	0.0189 (13)	-0.0004(9)	0.0002 (10)	0.0012 (10)
C17A	0.0125 (12)	0.0107 (11)	0.0169 (13)	-0.0008(9)	-0.0007 (10)	0.0014 (10)
C18A	0.0115 (12)	0.0135 (12)	0.0151 (13)	-0.0006(9)	0.0005 (10)	0.0034 (10)
O1B	0.0230 (10)	0.0105 (8)	0.0154 (9)	0.0027 (7)	-0.0015 (8)	0.0031 (7)
O2B	0.0195 (9)	0.0092 (8)	0.0177 (9)	0.0001 (7)	-0.0015 (7)	0.0030(7)
O3B	0.0218 (10)	0.0120 (8)	0.0144 (9)	-0.0008(7)	-0.0019 (7)	-0.0006 (7)
O4B	0.0255 (10)	0.0075 (8)	0.0137 (9)	-0.0017 (7)	-0.0020(7)	0.0026 (7)
C1B	0.0178 (13)	0.0073 (11)	0.0143 (12)	-0.0026(9)	-0.0001 (10)	0.0017 (9)
C2B	0.0182 (13)	0.0125 (12)	0.0185 (13)	0.0022 (10)	0.0003 (10)	0.0021 (10)
C3B	0.0243 (15)	0.0144 (13)	0.0208 (14)	0.0016 (11)	0.0066 (11)	0.0003 (10)
C4B	0.0237 (14)	0.0193 (13)	0.0102 (12)	-0.0040(11)	-0.0006(11)	0.0011 (10)
C5B	0.0217 (14)	0.0107 (12)	0.0160 (13)	-0.0042(10)	-0.0012 (11)	0.0016 (10)
C6B	0.0244 (15)	0.0182 (13)	0.0152 (13)	-0.0029(11)	-0.0052(11)	0.0024 (10)
C7B	0.0186 (14)	0.0182 (13)	0.0263 (15)	0.0007 (11)	-0.0045 (11)	0.0046 (11)
C8B	0.0168 (13)	0.0148 (12)	0.0239 (14)	0.0012 (10)	0.0016 (11)	-0.0023 (10)
C9B	0.0176 (13)	0.0122 (12)	0.0161 (13)	-0.0031(9)	-0.0010 (10)	-0.0006 (10)
C10B	0.0174 (13)	0.0101 (11)	0.0126 (12)	-0.0031 (9)	-0.0001 (10)	0.0009 (9)
C11B	0.0112 (12)	0.0104 (11)	0.0148 (12)	-0.0005(9)	0.0016 (10)	-0.0002(9)
C12B	0.0138 (12)	0.0090 (11)	0.0176 (13)	-0.0006(9)	0.0018 (10)	-0.0003(9)
C13B	0.0073 (11)	0.0121 (11)	0.0142 (12)	0.0036 (9)	0.0024 (9)	0.0033 (9)
C14B	0.0101 (12)	0.0117 (11)	0.0127 (12)	-0.0011(9)	0.0011 (9)	0.0030 (9)
C15B	0.0115 (12)	0.0092 (11)	0.0153 (12)	0.0000 (9)	0.0035 (10)	0.0024 (9)
C16B	0.0124 (12)	0.0085(11)	0.0188 (13)	-0.0004(9)	0.0030 (10)	0.0029 (9)
C17B	0.0107 (12)	0.0123 (11)	0.0119 (12)	0.0009 (9)	0.0003 (9)	0.0028 (9)
C18B	0.0127 (12)	0.0106 (11)	0.0171 (13)	0.0008 (9)	0.0036 (10)	0.0031 (10)
01C	0.0223 (10)	0.0131 (9)	0.0146 (9)	0.0004 (7)	-0.0024(7)	0.0037 (7)
O2C	0.0252 (10)	0.0077 (8)	0.0147 (9)	-0.0009(7)	-0.0014(8)	0.0029 (7)
03C	0.0233(10)	0.0094 (8)	0.0116 (9)	-0.0027(7)	-0.0027(7)	-0.0019(7)
04C	0.0209(10)	0.0095 (8)	0.0163 (9)	-0.0012(7)	-0.0021(7)	0.0024 (7)
C1C	0.0167 (13)	0.0075(10)	0.0126 (12)	0.0016 (9)	0.0008 (10)	0.0010 (9)
C2C	0.0171 (13)	0.0136 (12)	0.0165 (13)	-0.0040(10)	0.0001 (10)	0.0015 (10)
C3C	0.0213(14)	0.0180(13)	0.0171(13)	-0.0014(11)	0.0064 (11)	0.0059 (10)
C4C	0.0220(14)	0.0185(12)	0.0106(12)	0.0040 (10)	0.0003(10)	0.0023(10)
C5C	0.0167(13)	0.0126(12)	0.0149(13)	0.0021 (10)	0.0003(10)	0.0036(10)
C6C	0.0196(14)	0.0169(13)	0.0145(13)	0.0033(10)	-0.0039(11)	-0.0010(10)
C7C	0.0169 (13)	0.0174(13)	0.0244(14)	-0.0015(10)	-0.0047(11)	0.0029 (11)
C8C	0.0150(13)	0.0180(13)	0.0216(14)	-0.0006(10)	-0.0008(11)	0.0058(11)
C9C	0.0172(13)	0.0135(12)	0.0151(13)	0.0026 (10)	0.0017 (10)	0.0048 (10)
CIOC	0.0162(12)	0.0077(10)	0.0132(12)	0.0019 (9)	0.0016(10)	0.0016 (9)
CliC	0.0110(12)	0.0130(11)	0.0121(12)	0.0011 (9)	0.0019 (9)	0.0030(9)
C12C	0.0121(12)	0.0088(11)	0.0121(12)	-0.0007(9)	0.0029(10)	0.0002(9)
C13C	0.0110(12)	0.0106 (11)	0.0134(12)	0 0001 (9)	0.0029(10)	0.0002(9)
2120	J. J. I. J.	0.0100(11)	0.0101(14)	0.0001 (7)	0.0011 (2)	

supporting information

C14C	0.0127 (12)	0.0120 (11)	0.0084 (12)	0.0010 (9)	0.0003 (9)	0.0009 (9)
C15C	0.0079 (11)	0.0090 (11)	0.0154 (12)	0.0004 (9)	0.0018 (9)	-0.0010 (9)
C16C	0.0128 (12)	0.0127 (12)	0.0114 (12)	0.0002 (9)	0.0014 (10)	0.0037 (9)
C17C	0.0139 (12)	0.0108 (11)	0.0142 (13)	0.0006 (9)	0.0043 (10)	0.0023 (9)
C18C	0.0128 (12)	0.0105 (11)	0.0137 (12)	-0.0005 (9)	0.0009 (10)	0.0007 (9)
S1	0.0149 (3)	0.0153 (3)	0.0118 (3)	-0.0002 (2)	0.0010 (2)	0.0005 (2)
01G	0.0136 (9)	0.0261 (10)	0.0220 (10)	-0.0011 (8)	0.0023 (8)	-0.0005 (8)
C1G	0.0254 (15)	0.0225 (14)	0.0245 (15)	0.0029 (11)	0.0071 (12)	0.0105 (11)
C2G	0.0216 (14)	0.0174 (13)	0.0223 (14)	-0.0027 (10)	0.0016 (11)	-0.0037 (11)
S2	0.0140 (3)	0.0170 (3)	0.0130 (3)	0.0012 (2)	0.0017 (2)	0.0019 (2)
O1H	0.0136 (9)	0.0284 (10)	0.0209 (10)	0.0007 (8)	0.0024 (7)	0.0078 (8)
C1H	0.0223 (15)	0.0197 (13)	0.0252 (15)	0.0017 (11)	0.0018 (12)	0.0074 (11)
C2H	0.0253 (15)	0.0157 (13)	0.0312 (16)	-0.0022 (11)	0.0061 (12)	-0.0041 (11)
O1W	0.0348 (12)	0.0127 (9)	0.0159 (10)	0.0017 (8)	0.0092 (9)	0.0007 (8)
O2W	0.0360 (12)	0.0147 (9)	0.0164 (10)	0.0001 (8)	0.0109 (9)	0.0039 (8)
O3W	0.0179 (10)	0.0123 (9)	0.0146 (9)	0.0027 (7)	0.0001 (8)	0.0006 (7)
O4W	0.0173 (10)	0.0152 (9)	0.0140 (9)	-0.0008 (7)	-0.0010 (8)	0.0040 (7)

Geometric parameters (Å, °)

01—C17	1.318 (3)	C4B—C5B	1.412 (4)
O1—H1	0.8400	C4B—H4B1	0.9500
O2—C17	1.212 (3)	C5B—C6B	1.418 (4)
O3—C18	1.218 (3)	C5B—C10B	1.434 (3)
O4—C18	1.324 (3)	C6B—C7B	1.367 (4)
O4—H4	0.8400	С6В—Н6В	0.9500
C1—C2	1.368 (3)	C7B—C8B	1.408 (4)
C1—C10	1.427 (3)	С7В—Н7В	0.9500
C1—C11	1.490 (3)	C8B—C9B	1.369 (4)
C2—C3	1.407 (3)	C8B—H8B	0.9500
С2—Н2	0.9500	C9B—C10B	1.421 (3)
C3—C4	1.370 (4)	С9В—Н9В	0.9500
С3—Н3	0.9500	C11B—C12B	1.391 (3)
C4—C5	1.413 (4)	C11B—C16B	1.403 (3)
C4—H4A	0.9500	C12B—C13B	1.394 (3)
C5—C6	1.423 (3)	C12B—H12B	0.9500
C5—C10	1.428 (3)	C13B—C14B	1.393 (3)
C6—C7	1.352 (4)	C13B—C17B	1.488 (3)
С6—Н6	0.9500	C14B—C15B	1.396 (3)
C7—C8	1.422 (4)	C14B—H14B	0.9500
С7—Н7	0.9500	C15B—C16B	1.389 (3)
C8—C9	1.365 (4)	C15B—C18B	1.492 (3)
С8—Н8	0.9500	C16B—H16B	0.9500
C9—C10	1.421 (4)	O1C—C17C	1.220 (3)
С9—Н9	0.9500	O2C—C17C	1.319 (3)
C11—C16	1.395 (3)	O2C—H2C	0.8400
C11—C12	1.399 (3)	O3C—C18C	1.321 (3)
C12—C13	1.391 (3)	O3C—H3C	0.8400

C12 H12	0.9500	04C C18C	1 223 (3)
C_{12} -1112 C_{13} C_{14}	1 380 (3)	$C_1C_1C_2C_2$	1.223(3)
$C_{13} = C_{14}$	1.389(3) 1.406(3)	C1C - C10C	1.308(3) 1.432(3)
$C_{13} = C_{17}$	1.490(3)		1.432(3)
C14 - C13	0.0500		1.492(3)
C14—H14	0.9300	$C_2C_2C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C$	1.410 (4)
C15 - C10	1.387(3)	$C_2C_{$	0.9300
	1.491 (3)	$C_{2}C_{-}U_{2}C_{1}$	1.303 (4)
C10—H10	0.9500		0.9300
OIA - CI7A	1.218(3)		1.421 (4)
02A - U2A	1.321 (3)		0.9500
O2A—H2A	0.8400		1.419 (4)
O3A—C18A	1.320 (3)		1.427 (3)
O3A—H3A	0.8400	C6C—C7C	1.362 (4)
O4A—C18A	1.218 (3)	С6С—Н6С	0.9500
C1A—C2A	1.378 (4)	C7C—C8C	1.412 (4)
C1A—C10A	1.430 (4)	C7C—H7C	0.9500
C1A—C11A	1.498 (3)	C8C—C9C	1.365 (4)
C2A—C3A	1.408 (4)	C8C—H8C	0.9500
C2A—H2A1	0.9500	C9C—C10C	1.426 (3)
C3A—C4A	1.365 (4)	С9С—Н9С	0.9500
C3A—H3A1	0.9500	C11C—C16C	1.384 (3)
C4A—C5A	1.413 (4)	C11C—C12C	1.399 (3)
C4A—H4A1	0.9500	C12C—C13C	1.388 (3)
C5A—C6A	1.419 (4)	C12C—H12C	0.9500
C5A-C10A	1.429 (3)	C13C—C14C	1.394 (3)
C6A—C7A	1.363 (4)	C13C—C17C	1.493 (3)
С6А—Н6А	0.9500	C14C—C15C	1.383 (3)
C7A—C8A	1.412 (4)	C14C—H14C	0.9500
С7А—Н7А	0.9500	C15C—C16C	1.395 (3)
C8A—C9A	1.359 (4)	C15C—C18C	1.491 (3)
C8A—H8A	0.9500	C16C—H16C	0.9500
C9A—C10A	1.422 (4)	S1—01G	1.5229 (18)
С9А—Н9А	0.9500	S1—C2G	1.782 (3)
C11A—C16A	1.393 (3)	S1—C1G	1.784 (3)
C11A—C12A	1.399 (3)	C1G—H1G1	0.9800
C12A—C13A	1.390 (3)	C1G—H1G2	0.9800
C12A—H12A	0.9500	C1G—H1G3	0.9800
C13A—C14A	1.391 (3)	C2G—H2G1	0.9800
C13A—C17A	1.496 (3)	C2G—H2G2	0.9800
C14A—C15A	1.399 (3)	C2G—H2G3	0.9800
C14A—H14A	0.9500	S2—O1H	1.5242 (18)
C15A—C16A	1,396 (3)	S2—C1H	1.780 (3)
C15A—C18A	1.483 (3)	S2—C2H	1.785 (3)
C16A—H16A	0.9500	C1H—H1H1	0.9800
O1B-C17B	1 321 (3)	C1H—H1H2	0.9800
OIB—HIB	0.8400	СІН—НІНЗ	0.9800
O^2B — $C17B$	1 218 (3)	С2Н—Н2Н1	0.9800
O3B - C18B	1 216 (3)	C2H_H2H2	0.9800
0.00-0.100	1.210 (3)	0211-112112	0.9000

O4B—C18B	1.326 (3)	С2Н—Н2Н3	0.9800
O4B—H4B	0.8400	O1W—H1W1	0.856 (10)
C1B—C2B	1.374 (3)	O1W—H2W1	0.856 (10)
C1B-C10B	1.435 (3)	O2W—H1W2	0.846 (10)
C1B—C11B	1.491 (3)	O2W—H2W2	0.853 (10)
C2B—C3B	1.419 (4)	O3W—H1W3	0.847 (10)
C2B—H2B	0.9500	O3W—H2W3	0.853 (10)
C3B—C4B	1.361 (4)	O4W—H1W4	0.849 (10)
СЗВ—НЗВ	0.9500	O4W—H2W4	0.861 (10)
C17—O1—H1	109.5	C7B—C6B—C5B	121.0 (3)
C18—O4—H4	109.5	С7В—С6В—Н6В	119.5
C2—C1—C10	119.8 (2)	С5В—С6В—Н6В	119.5
C2—C1—C11	118.2 (2)	C6B—C7B—C8B	120.4 (2)
C10—C1—C11	121.9 (2)	C6B—C7B—H7B	119.8
C1—C2—C3	121.5 (2)	C8B—C7B—H7B	119.8
C1—C2—H2	119.2	C9B—C8B—C7B	120.4 (2)
С3—С2—Н2	119.2	C9B—C8B—H8B	119.8
C4—C3—C2	119.8 (2)	C7B—C8B—H8B	119.8
С4—С3—Н3	120.1	C8B—C9B—C10B	121.0 (2)
С2—С3—Н3	120.1	C8B—C9B—H9B	119.5
C3—C4—C5	120.8 (2)	C10B—C9B—H9B	119.5
C3—C4—H4A	119.6	C9B—C10B—C5B	118.4 (2)
C5—C4—H4A	119.6	C9B—C10B—C1B	123.2 (2)
C4—C5—C6	122.0 (2)	C5B-C10B-C1B	118.4 (2)
C4—C5—C10	119.3 (2)	C12B—C11B—C16B	118.0 (2)
C6—C5—C10	118.7 (2)	C12B—C11B—C1B	122.5 (2)
C7—C6—C5	121.6 (2)	C16B—C11B—C1B	119.5 (2)
С7—С6—Н6	119.2	C11B—C12B—C13B	120.8 (2)
С5—С6—Н6	119.2	C11B—C12B—H12B	119.6
C6—C7—C8	119.8 (2)	C13B—C12B—H12B	119.6
С6—С7—Н7	120.1	C14B—C13B—C12B	120.9 (2)
С8—С7—Н7	120.1	C14B—C13B—C17B	120.8 (2)
C9—C8—C7	120.3 (2)	C12B—C13B—C17B	118.3 (2)
С9—С8—Н8	119.8	C13B—C14B—C15B	118.9 (2)
С7—С8—Н8	119.8	C13B—C14B—H14B	120.6
C8—C9—C10	121.2 (2)	C15B—C14B—H14B	120.6
С8—С9—Н9	119.4	C16B—C15B—C14B	120.0 (2)
С10—С9—Н9	119.4	C16B—C15B—C18B	121.2 (2)
C9—C10—C1	123.1 (2)	C14B—C15B—C18B	118.9 (2)
C9—C10—C5	118.2 (2)	C15B—C16B—C11B	121.5 (2)
C1—C10—C5	118.6 (2)	C15B—C16B—H16B	119.2
C16—C11—C12	118.0 (2)	C11B—C16B—H16B	119.2
C16—C11—C1	121.4 (2)	O2B—C17B—O1B	123.9 (2)
C12—C11—C1	120.5 (2)	O2B—C17B—C13B	121.6 (2)
C13—C12—C11	120.8 (2)	O1B—C17B—C13B	114.5 (2)
C13—C12—H12	119.6	O3B—C18B—O4B	124.1 (2)
C11—C12—H12	119.6	O3B—C18B—C15B	124.4 (2)

C14—C13—C12	120.5 (2)	O4B-C18B-C15B	111.5 (2)
C14—C13—C17	121.9 (2)	C17C—O2C—H2C	109.5
C12—C13—C17	117.6 (2)	C18C—O3C—H3C	109.5
C13—C14—C15	119.2 (2)	C2C—C1C—C10C	119.8 (2)
C13—C14—H14	120.4	C2C—C1C—C11C	118.0 (2)
C15—C14—H14	120.4	C10C—C1C—C11C	122.2 (2)
C16—C15—C14	120.1 (2)	C1C—C2C—C3C	121.2 (2)
C16—C15—C18	120.7 (2)	C1C—C2C—H2C1	119.4
C14—C15—C18	119.2 (2)	C3C—C2C—H2C1	119.4
C15—C16—C11	121.4 (2)	C4C—C3C—C2C	120.3 (2)
C15—C16—H16	119.3	C4C—C3C—H3C1	119.8
C11—C16—H16	119.3	C2C—C3C—H3C1	119.8
02-C17-01	124.2 (2)	C3C - C4C - C5C	120.7(2)
02-C17-C13	121.7(2)	C3C—C4C—H4C	119.6
01-C17-C13	114.1 (2)	C5C—C4C—H4C	119.6
03-C18-O4	1245(2)	C6C - C5C - C4C	122.0(2)
03-C18-C15	1235(2)	C6C - C5C - C10C	1122.0(2) 1190(2)
04-C18-C15	123.3(2) 112.0(2)	C4C - C5C - C10C	119.0(2) 118.9(2)
C17A - O2A - H2A	109 5	C7C - C6C - C5C	121.3(2)
C18A = O3A = H3A	109.5	C7C - C6C - H6C	119.4
C_{2A} C_{1A} C_{10A}	119.6 (2)	$C_{1}C_{1}C_{2}C_{2}C_{2}C_{1}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2$	119.4
C_{2A} C_{1A} C_{11A}	119.6(2)	$C_{6}C_{-}C_{7}C_{-}C_{8$	120.0(2)
C10A - C1A - C11A	120.7(2)	C6C - C7C - H7C	120.0 (2)
C1A - C2A - C3A	120.7(2) 1213(2)	C8C - C7C - H7C	120.0
C1A - C2A - H2A1	119 3	C9C - C8C - C7C	120.0 120.5(2)
C_{3A} C_{2A} H_{2A1}	119.3	C9C - C8C - H8C	119.8
$C_{4A} = C_{3A} = C_{2A}$	120.0(2)	C7C - C8C - H8C	119.8
C4A - C3A - H3A1	120.0 (2)	C8C - C9C - C10C	119.0 121.2(2)
$C_{A} = C_{A} = H_{A}$	120.0	C8C - C9C - H9C	121.2 (2)
$C_{3A} - C_{4A} - C_{5A}$	120.0 121.0(2)	C10C - C9C - H9C	119.4
C_{3A} C_{4A} H_{4A1}	119 5	C9C - C10C - C5C	119.1 118.0(2)
C5A - C4A - H4A1	119.5	C9C - C10C - C1C	123.0(2)
C4A - C5A - C6A	121.6 (2)	$C_{5}C_{-}C_{10}C_{-}C_{1}C_{-}C_{$	129.0(2) 119.0(2)
C4A = C5A = C10A	121.0(2) 1193(2)	C16C - C11C - C12C	119.0(2) 118.4(2)
C6A - C5A - C10A	119.3(2) 119.1(2)	C16C - C11C - C1C	110.4(2) 120.8(2)
C7A - C6A - C5A	117.1(2) 1211(3)	C12C - C11C - C1C	120.6(2)
C7A - C6A - H6A	119.4	C13C - C12C - C11C	120.0(2) 120.7(2)
C_{1}^{2}	119.4	C13C - C12C - H12C	120.7 (2)
C64 - C74 - C84	119.4	C11C-C12C-H12C	119.7
C6A - C7A - H7A	120.1	$C_{12}C_{}C_{13}C_{}C_{14}C_{}C_{14}C_{-$	119.7 120.3(2)
C84 - C74 - H74	120.1	$C_{12}C_{}C_{13}C_{}C_{17}C_{}C_{}C_{17}C_{-$	120.5(2) 120.5(2)
C9A - C8A - C7A	120.1	C12C = C13C = C17C	120.3(2) 119.2(2)
C9A - C8A - H8A	119.6	C15C - C14C - C13C	119.2(2) 119.3(2)
C7A - C8A - H8A	119.6	C15C - C14C - H14C	120.4
C8A - C9A - C10A	121 2 (2)	C13C - C14C - H14C	120.4
	119.4	C14C - C15C - C16C	120.7 120.2(2)
	119.4	C14C - C15C - C18C	120.2(2) 1217(2)
C9A - C10A - C1A	123.4 (2)	C16C - C15C - C18C	121.7(2) 1181(2)
UM UM UM	123,7 (2)		110.1 (2)

C9A—C10A—C5A	117.9 (2)	C11C—C16C—C15C	121.1 (2)
C1A—C10A—C5A	118.6 (2)	C11C—C16C—H16C	119.5
C16A—C11A—C12A	118.3 (2)	C15C—C16C—H16C	119.5
C16A—C11A—C1A	121.8 (2)	O1C—C17C—O2C	124.4 (2)
C12A—C11A—C1A	119.9 (2)	O1C—C17C—C13C	123.5 (2)
C13A—C12A—C11A	121.2 (2)	O2C—C17C—C13C	112.1 (2)
C13A—C12A—H12A	119.4	O4C—C18C—O3C	123.5 (2)
C11A—C12A—H12A	119.4	O4C—C18C—C15C	121.6 (2)
C12A—C13A—C14A	120.4 (2)	O3C - C18C - C15C	114.9 (2)
C12A— $C13A$ — $C17A$	120.4 (2)	O1G-S1-C2G	105.32(11)
C14A - C13A - C17A	119.3 (2)	016 - 81 - C16	105.23(12)
C13A - C14A - C15A	119.0 (2)	$C_{2G} = \$_{1} = C_{1G}$	98.15 (13)
C13A - C14A - H14A	120.5	S1-C1G-H1G1	109 5
C15A - C14A - H14A	120.5	SI-CIG-HIG2	109.5
C16A - C15A - C14A	120.3 120.4(2)	H_1G_1 — C_1G — H_1G_2	109.5
$C_{16A} - C_{15A} - C_{18A}$	1120.1(2) 118.8(2)	S1-C1G-H1G3	109.5
C_{14A} C_{15A} C_{16A}	120.8(2)	HIGI_CIG_HIG3	109.5
$C_{11A} = C_{16A} = C_{15A}$	120.8(2)	H1G2-C1G-H1G3	109.5
$C_{11}A - C_{16}A - H_{16}A$	119.6	S1H2G1	109.5
C15A - C16A - H16A	119.6	S1C2GH2G2	109.5
O14 - C174 - O24	1242(2)	$H^{2}G^{1}$	109.5
O1A - C17A - C13A	124.2(2) 123.8(2)	S1_C2G_H2G3	109.5
$O_{2A} = C_{17A} = C_{13A}$	123.0(2) 111.0(2)	$H^{2}G^{1}$	109.5
$O_{2A} = C_{17A} = C_{15A}$	111.9(2) 124.0(2)	$H_2G_1 = C_2G = H_2G_3$	109.5
O4A = C18A = O5A	124.0(2) 1215(2)	01H S2 C1H	109.5
$O_{A} = C_{18A} = C_{15A}$	121.3(2) 114.5(2)	$O_{11} = S_2 = C_{11}$	104.80(12) 104.87(12)
C17D O1D U1D	114.5 (2)	C_{11} S_2 C_{21}	104.87(12)
$C_{1/B} = O_{1B} = H_{1B}$	109.5	$C_{11} - 52 - C_{21}$	98.30 (13)
$C_{18}D - O_{4}D - O_{4}D$	109.3	$S_2 = C_1 H = H_1 H_2$	109.5
C_{2B} C_{1B} C_{11B}	119.4(2)		109.5
CIAD CID CIID	119.3(2)		109.5
C10B - C1B - C11B	121.0(2) 121.5(2)		109.5
CIB = C2B = C3B	121.5 (2)		109.5
C1B - C2B - H2B	119.2	HIH2—CIH—HIH3	109.5
C_{3B} C_{2B} H_{2B}	119.2	$S_2 = C_2 H = H_2 H_1$	109.5
C4B = C3B = C2B	119.9 (2)	S2—C2H—H2H2	109.5
C4B - C3B - H3B	120.0	$H_2H_1 = C_2H = H_2H_2$	109.5
C2B—C3B—H3B	120.0	S2—C2H—H2H3	109.5
C3B—C4B—C5B	120.9 (2)	H2H1—C2H—H2H3	109.5
C3B—C4B—H4B1	119.6	H2H2—C2H—H2H3	109.5
C5B—C4B—H4B1	119.6	HIWI-OIW-H2WI	106 (3)
C4B—C5B—C6B	121.6 (2)	H1W2—O2W—H2W2	115 (4)
C4B—C5B—C10B	119.7 (2)	H1W3—O3W—H2W3	110 (3)
C6B—C5B—C10B	118.7 (2)	H1W4—O4W—H2W4	117 (3)
C10—C1—C2—C3	1.8 (4)	C10B—C1B—C2B—C3B	-3.1 (4)
C11—C1—C2—C3	-176.7 (2)	C11B—C1B—C2B—C3B	174.7 (2)
C1—C2—C3—C4	0.4 (4)	C1B—C2B—C3B—C4B	-0.3 (4)
C2—C3—C4—C5	-1.7 (4)	C2B—C3B—C4B—C5B	2.7 (4)

C3—C4—C5—C6	-178.0(2)	C3B—C4B—C5B—C6B	177.2 (2)
C3—C4—C5—C10	0.9 (4)	C3B-C4B-C5B-C10B	-1.7 (4)
C4—C5—C6—C7	177.4 (3)	C4B—C5B—C6B—C7B	-178.1 (3)
C10—C5—C6—C7	-1.5 (4)	C10B—C5B—C6B—C7B	0.8 (4)
C5—C6—C7—C8	-0.4 (4)	C5B—C6B—C7B—C8B	0.8 (4)
C6—C7—C8—C9	1.0 (4)	C6B—C7B—C8B—C9B	-0.9 (4)
C7—C8—C9—C10	0.4 (4)	C7B—C8B—C9B—C10B	-0.7(4)
C8—C9—C10—C1	-179.5 (2)	C8B—C9B—C10B—C5B	2.3 (3)
C8—C9—C10—C5	-2.3 (4)	C8B—C9B—C10B—C1B	-179.5 (2)
C2—C1—C10—C9	174.6 (2)	C4B—C5B—C10B—C9B	176.6 (2)
C11—C1—C10—C9	-7.0 (4)	C6B—C5B—C10B—C9B	-2.3(3)
C2-C1-C10-C5	-2.5 (3)	C4B-C5B-C10B-C1B	-1.7(3)
C11—C1—C10—C5	175.9 (2)	C6B-C5B-C10B-C1B	179.4 (2)
C4—C5—C10—C9	-176.1 (2)	C2B—C1B—C10B—C9B	-174.2 (2)
C6—C5—C10—C9	2.8 (3)	C11B—C1B—C10B—C9B	8.1 (4)
C4—C5—C10—C1	1.2 (3)	C2B-C1B-C10B-C5B	4.0 (3)
C6—C5—C10—C1	-179.9 (2)	C11B—C1B—C10B—C5B	-173.7 (2)
C2—C1—C11—C16	121.8 (3)	C2B-C1B-C11B-C12B	56.6 (3)
C10—C1—C11—C16	-56.7 (3)	C10B—C1B—C11B—C12B	-125.7(3)
C2-C1-C11-C12	-54.3 (3)	C2B-C1B-C11B-C16B	-120.6(3)
C10-C1-C11-C12	127.3 (3)	C10B—C1B—C11B—C16B	57.1 (3)
C16—C11—C12—C13	-0.1 (4)	C16B—C11B—C12B—C13B	1.1 (3)
C1—C11—C12—C13	176.1 (2)	C1B—C11B—C12B—C13B	-176.2 (2)
C11—C12—C13—C14	-0.8 (4)	C11B—C12B—C13B—C14B	0.2 (3)
C11—C12—C13—C17	178.6 (2)	C11B—C12B—C13B—C17B	-179.0 (2)
C12—C13—C14—C15	1.0 (4)	C12B—C13B—C14B—C15B	-1.1(3)
C17—C13—C14—C15	-178.4 (2)	C17B—C13B—C14B—C15B	178.2 (2)
C13—C14—C15—C16	-0.3 (4)	C13B—C14B—C15B—C16B	0.5 (3)
C13—C14—C15—C18	-178.6 (2)	C13B—C14B—C15B—C18B	178.7 (2)
C14—C15—C16—C11	-0.7 (4)	C14B—C15B—C16B—C11B	0.8 (4)
C18—C15—C16—C11	177.6 (2)	C18B—C15B—C16B—C11B	-177.3 (2)
C12—C11—C16—C15	0.9 (4)	C12B—C11B—C16B—C15B	-1.6 (4)
C1—C11—C16—C15	-175.3 (2)	C1B—C11B—C16B—C15B	175.7 (2)
C14—C13—C17—O2	174.1 (2)	C14B—C13B—C17B—O2B	-174.2(2)
C12—C13—C17—O2	-5.3 (4)	C12B—C13B—C17B—O2B	5.0 (3)
C14—C13—C17—O1	-5.9 (3)	C14B—C13B—C17B—O1B	5.9 (3)
C12—C13—C17—O1	174.6 (2)	C12B—C13B—C17B—O1B	-174.9(2)
C16—C15—C18—O3	-173.5 (2)	C16B—C15B—C18B—O3B	173.8 (2)
C14—C15—C18—O3	4.8 (4)	C14B—C15B—C18B—O3B	-4.4 (4)
C16—C15—C18—O4	5.4 (3)	C16B—C15B—C18B—O4B	-5.9(3)
C14—C15—C18—O4	-176.3 (2)	C14B—C15B—C18B—O4B	176.0 (2)
C10A—C1A—C2A—C3A	-2.7(3)	C10C—C1C—C2C—C3C	1.5 (4)
C11A—C1A—C2A—C3A	174.1 (2)	C11C—C1C—C2C—C3C	-177.6(2)
C1A—C2A—C3A—C4A	-0.3 (4)	C1C—C2C—C3C—C4C	1.2 (4)
C2A—C3A—C4A—C5A	2.8 (4)	C2C—C3C—C4C—C5C	-2.5 (4)
C3A—C4A—C5A—C6A	177.7 (2)	C3C—C4C—C5C—C6C	-177.8(2)
C3A—C4A—C5A—C10A	-2.1 (3)	C3C—C4C—C5C—C10C	1.1 (4)
C4A—C5A—C6A—C7A	-178.3 (2)	C4C—C5C—C6C—C7C	177.9 (2)

C10A—C5A—C6A—C7A	1.5 (4)	C10C—C5C—C6C—C7C	-1.1 (3)
C5A—C6A—C7A—C8A	0.8 (4)	C5C—C6C—C7C—C8C	-1.1 (4)
C6A—C7A—C8A—C9A	-1.8 (4)	C6C—C7C—C8C—C9C	1.7 (4)
C7A—C8A—C9A—C10A	0.3 (4)	C7C—C8C—C9C—C10C	-0.1 (4)
C8A—C9A—C10A—C1A	179.8 (2)	C8C—C9C—C10C—C5C	-2.0 (3)
C8A—C9A—C10A—C5A	2.0 (3)	C8C—C9C—C10C—C1C	-179.9 (2)
C2A-C1A-C10A-C9A	-174.5 (2)	C6C—C5C—C10C—C9C	2.6 (3)
C11A—C1A—C10A—C9A	8.7 (3)	C4C—C5C—C10C—C9C	-176.4 (2)
C2A—C1A—C10A—C5A	3.3 (3)	C6C—C5C—C10C—C1C	-179.5 (2)
C11A—C1A—C10A—C5A	-173.5 (2)	C4C—C5C—C10C—C1C	1.5 (3)
C4A—C5A—C10A—C9A	176.9 (2)	C2C—C1C—C10C—C9C	175.0 (2)
C6A—C5A—C10A—C9A	-2.8 (3)	C11C—C1C—C10C—C9C	-5.9 (3)
C4A—C5A—C10A—C1A	-1.0 (3)	C2C—C1C—C10C—C5C	-2.8 (3)
C6A—C5A—C10A—C1A	179.3 (2)	C11C—C1C—C10C—C5C	176.3 (2)
C2A—C1A—C11A—C16A	56.6 (3)	C2C—C1C—C11C—C16C	-54.5 (3)
C10A—C1A—C11A—C16A	-126.5 (3)	C10C—C1C—C11C—C16C	126.4 (2)
C2A—C1A—C11A—C12A	-120.0 (3)	C2C—C1C—C11C—C12C	121.9 (3)
C10A—C1A—C11A—C12A	56.9 (3)	C10C—C1C—C11C—C12C	-57.2 (3)
C16A—C11A—C12A—C13A	-1.1 (4)	C16C—C11C—C12C—C13C	1.2 (3)
C1A—C11A—C12A—C13A	175.6 (2)	C1C—C11C—C12C—C13C	-175.3 (2)
C11A—C12A—C13A—C14A	1.2 (4)	C11C—C12C—C13C—C14C	-0.5 (3)
C11A—C12A—C13A—C17A	-177.8 (2)	C11C—C12C—C13C—C17C	177.6 (2)
C12A—C13A—C14A—C15A	0.0 (4)	C12C—C13C—C14C—C15C	-0.8 (3)
C17A—C13A—C14A—C15A	179.1 (2)	C17C—C13C—C14C—C15C	-179.0 (2)
C13A—C14A—C15A—C16A	-1.3 (4)	C13C—C14C—C15C—C16C	1.5 (3)
C13A—C14A—C15A—C18A	178.5 (2)	C13C—C14C—C15C—C18C	-178.6 (2)
C12A—C11A—C16A—C15A	-0.1 (4)	C12C—C11C—C16C—C15C	-0.5 (3)
C1A—C11A—C16A—C15A	-176.8 (2)	C1C—C11C—C16C—C15C	176.0 (2)
C14A—C15A—C16A—C11A	1.4 (4)	C14C—C15C—C16C—C11C	-0.9 (3)
C18A—C15A—C16A—C11A	-178.5 (2)	C18C—C15C—C16C—C11C	179.2 (2)
C12A—C13A—C17A—O1A	172.8 (2)	C12C—C13C—C17C—O1C	-174.8 (2)
C14A—C13A—C17A—O1A	-6.2 (4)	C14C—C13C—C17C—O1C	3.3 (4)
C12A—C13A—C17A—O2A	-6.2 (3)	C12C—C13C—C17C—O2C	4.4 (3)
C14A—C13A—C17A—O2A	174.8 (2)	C14C—C13C—C17C—O2C	-177.5 (2)
C16A—C15A—C18A—O4A	5.8 (4)	C14C—C15C—C18C—O4C	174.9 (2)
C14A—C15A—C18A—O4A	-174.0 (2)	C16C—C15C—C18C—O4C	-5.2 (3)
C16A—C15A—C18A—O3A	-174.2 (2)	C14C—C15C—C18C—O3C	-5.1 (3)
C14A—C15A—C18A—O3A	6.0 (3)	C16C—C15C—C18C—O3C	174.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
$O1$ — $H1$ ··· $O1W^i$	0.84	1.72	2.559 (2)	175
O1 <i>B</i> —H1 <i>B</i> ···O3 <i>W</i>	0.84	1.74	2.573 (2)	168
O2A—H2A····O4A ⁱⁱ	0.84	1.82	2.583 (2)	151
O2C— $H2C$ ···O4 C ⁱⁱ	0.84	1.81	2.584 (2)	152
O3A— $H3A$ ··· $O2W$ ⁱⁱⁱ	0.84	1.73	2.565 (3)	174
O3 <i>C</i> —H3 <i>C</i> ···O4 <i>W</i>	0.84	1.72	2.561 (2)	176

supporting information

O4—H4···O2 ⁱⁱⁱ	0.84	1.81	2.591 (2)	154	
$O4B$ —H4 B ···O2 B^{iii}	0.84	1.81	2.578 (2)	150	
$O1W$ — $H1W1$ ··· $O1H^{iv}$	0.85 (3)	1.92 (3)	2.716 (3)	155 (3)	
O1W— $H2W1$ ···O3 ^v	0.85 (3)	2.04 (3)	2.858 (2)	162 (3)	
$O2W$ —H1 $W2$ ···O1 G^{vi}	0.85 (3)	1.91 (3)	2.742 (3)	168 (3)	
O2 <i>W</i> —H2 <i>W</i> 2···O1 <i>A</i>	0.85 (2)	2.03 (2)	2.879 (2)	174 (3)	
$O3W$ —H1 $W3$ ···O1 G^{vii}	0.85 (2)	1.85 (2)	2.680 (3)	165 (3)	
O3 <i>W</i> —H2 <i>W</i> 3····O3 <i>B</i> ⁱⁱ	0.85 (2)	1.98 (2)	2.824 (2)	170 (3)	
O4W—H1W4···O1H ^{vii}	0.85 (2)	1.84 (2)	2.656 (3)	162 (3)	
O4 <i>W</i> —H2 <i>W</i> 4···O1 <i>C</i> ⁱⁱⁱ	0.86 (3)	1.96 (3)	2.808 (2)	172 (3)	

Symmetry codes: (i) *x*-1, *y*+1, *z*; (ii) *x*, *y*+1, *z*; (iii) *x*, *y*-1, *z*; (iv) *x*, *y*, *z*+1; (v) *x*+1, *y*, *z*; (vi) *x*-1, *y*, *z*+1; (vii) *x*-1, *y*, *z*.