Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Thiophene-2-carbaldehyde azine

David K. Geiger,* H. Cristina Geiger and Laura M. Szczesniak

Department of Chemistry, State University of New York-College at Geneseo, 1 College Circle, Geneseo, NY 14454, USA
Correspondence e-mail: geiger@geneseo.edu

Received 14 March 2013; accepted 14 May 2013
Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.059 ; w R$ factor $=0.156$; data-to-parameter ratio $=14.8$.

The asymmetric unit of the title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2}$, is composed of two independent half-molecules, each residing on a center of symmetry. In the crystal, weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions join the two symmetry-independent molecules together into interlinked chains parallel to [011]. The crystal structure was refined as a two-component pseudo-merohedral twin using the twin law $0010 \overline{1} 0100$. The refined domain fractions are 0.516 (3) and 0.484 (3).

Related literature

For the structure of pyridine-4-carbaldehyde, see: Shanmuga Sundara Raj et al. (2000) and for the structure of (E)-1-di-phenylmethylidene-2-[(1H-indol-3-yl)methylidene]hydrazine, see: Archana et al. (2010).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2} & a=9.681(2) \AA \\
M_{r}=220.30 & b=11.399(3) \AA \\
\text { Monoclinic, } P 2_{1} / n & c=9.694(2) \AA
\end{array}
$$

$\beta=100.850(9)^{\circ}$
$V=1050.6$ (5) \AA^{3}
$Z=4$
$\begin{aligned} \mu & =0.47 \mathrm{~mm}^{-1}\end{aligned}$
$T=200 \mathrm{~K}$
Mo $K \alpha$ radiation
Data collection
Bruker SMART X2S CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2010) $T_{\text {min }}=0.69, T_{\text {max }}=0.91$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.156$
$S=0.99$
1890 reflections

$$
0.50 \times 0.20 \times 0.20 \mathrm{~mm}
$$

7000 measured reflections 1890 independent reflections 1349 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.073$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{C} 8$	0.95	2.77	$3.683(7)$	161
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{C} 9$	0.95	2.85	$3.576(7)$	134
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{C} 4^{\mathrm{i}}$	0.95	2.77	$3.663(7)$	156

Symmetry code: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by a Congressionally directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZP2003).

References

Archana, R., Anbazhagan, R., Sankaran, K. R., Thiruvalluvar, A. \& Butcher, R. J. (2010). Acta Cryst. E66, o1586.

Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Shanmuga Sundara Raj, S., Fun, H.-K., Zhang, J., Xiong, R.-G. \& You, X.-Z. (2000). Acta Cryst. C56, e274-e275.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, o916 [doi:10.1107/S1600536813013275]

Thiophene-2-carbaldehyde azine

David K. Geiger, H. Cristina Geiger and Laura M. Szczesniak

S1. Comment

The title compound was a side product in the attempted reduction of a nitro-substituted benzimidazole derivative but was subsequently rationally synthesized as outlined in the experimental section.

Thiophene-2-carbaldehyde azine crystallizes with two half-molecules in the asymmetric unit. Each sits on a crystallographically required center of symmetry. Figure 1 shows a perspective view of the two molecules with the atomlabeling scheme. The hydrazine substitutents adopt a ($1 \mathrm{E}, 2 \mathrm{E}$) configuration, as required by the crystallographically imposed symmetry. The two molecules are essentially planar. The thiophene containing S1 is canted $1.63(12)^{\circ}$ from the molecular plane and the thiophene containing S2 is canted $1.63(15)^{\circ}$ from the molecular plane. The $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2 — \mathrm{~S} 2$ and $\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7-\mathrm{S} 2$ torsional angles are $0.4(6)^{\circ}$ and $1.8(7)^{\circ}$, respectively, and the $\mathrm{N}^{\prime} 1^{\prime}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{N} 2^{\prime}-\mathrm{N} 2-$ C6-C7 torsional angles are $178.3(4)^{\circ}$ and $178.9(4)^{\circ}$, respectively. The orientation of the substituents is similar to that found for pyridine-4-carbaldehyde azine, 1.12 (9) ${ }^{\circ}$, (Shanmuga Sundara Raj et al., 2000) and the indole ring in (E)-1-di-phenylmethylidene-2-[(1H-indol-3-yl)methylidene]hydrazine, $0.95(10)^{\circ}$, (Archana et al., 2010).
A view of the unit cell is shown in Figure 2. Weak C-H $\cdots \pi$ interactions between the symmetry independent molecules result in chains parallel to [011]. The $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{C} 8$ and $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{C} 9$ intermolecular distances are 2.77 and $2.85 \AA$, respectively. There is a short intermolecular distance of C8-H8 $\cdots \mathrm{C} 4$ (2.77 \AA).

S2. Experimental

$0.126 \mathrm{ml}(4.05 \mathrm{mmol})$ of hydrazine hydrate in 1 ml of ethanol was slowly added to $0.82 \mathrm{ml}(0.98 \mathrm{~g}, 8.8 \mathrm{mmol})$ of 2-thiophene carboxaldehyde in 35 ml of ethanol at room temperature with stirring. The reaction was refluxed for 4 h and monitored by TLC. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and the product was obtained by vacuum filtration. 0.32 g obtained (33% yield). $R_{\mathrm{f}}=0.88\left(\mathrm{EtOAc} / \mathrm{EtOH}, 2: 1(v / v)\right.$ on silica gel). $\mathrm{mp}=147-149^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$, $8.80(\mathrm{~s}, 2 \mathrm{H}) ; 7.50(\mathrm{~d}, 2 \mathrm{H}) ; 7.44(\mathrm{~d}, 2 \mathrm{H}) ; 7.14(\mathrm{dd}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta, 155.80,139.00,132.50,130.04,127.84$.
Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol/ethylacetate solution.

S3. Refinement

The autosolve routine of the APEXII software (Bruker, 2010) chose an orthorhombic, C-centered cell, but no suitable space group could be found. Subsequently, the structure was solved in $P 2_{1} / n$ and refined to $R_{1}=0.17$ and $S=3.27$. Refinement as a pseudo-merohedral twin with the twin law $0010-10100$ resulted in a dramatic improvement in the model. The domain fractions refined to 0.516 (3) and 0.484 (3).
The H atoms were refined using a riding model with a $\mathrm{C}-\mathrm{H}$ distance of $0.95 \AA$ and the thermal parameters were set using the approximation $U_{\text {iso }}=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
Perspective view of the title compound showing the atom-labeling scheme used for the two half molecules in the asymmetric unit. Displacement ellipsoids of the nonhydrogen atoms are drawn at the 50% probability level.

Figure 2
The unit cell of the title compound showing the linked chains parallel to [011].

(1E,2E)-Bis[(thiophen-2-yl)methylidene]hydrazine

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2}$
$M_{r}=220.30$
Monoclinic, $P 2_{1} / n$
$a=9.681$ (2) \AA
$b=11.399$ (3) \AA
$c=9.694(2) \AA$
$\beta=100.850(9)^{\circ}$
$V=1050.6(5) \AA^{3}$
$Z=4$
$F(000)=456$

Data collection

Bruker SMART X2S CCD

diffractometer
Radiation source: XOS X-beam microfocus source
Doubly curved silicon crystal monochromator
Detector resolution: 8.3330 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2010)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.156$
$S=0.99$
1890 reflections
128 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$D_{\mathrm{x}}=1.393 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 420 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1222 reflections
$\theta=2.8-21.5^{\circ}$
$\mu=0.47 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Prism, yellow
$0.50 \times 0.20 \times 0.20 \mathrm{~mm}$
$T_{\text {min }}=0.69, T_{\text {max }}=0.91$
7000 measured reflections
1890 independent reflections
1349 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.073$
$\theta_{\text {max }}=25.4^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 13$
$l=-11 \rightarrow 11$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0825 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.61 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$-0.15035(15)$	$0.24362(18)$	$-0.24483(16)$	$0.0462(4)$
S2	$-0.25404(15)$	$0.26513(11)$	$0.35231(15)$	$0.0486(5)$
N1	$-0.0295(4)$	$0.0438(3)$	$-0.0474(4)$	$0.0442(12)$
N2	$-0.0495(4)$	$0.4567(3)$	$0.4718(4)$	$0.0446(13)$

C1	$-0.0425(5)$	$0.1418(4)$
H1	-0.0153	0.147
C2	$-0.0969(5)$	$0.2439(3)$
C3	$-0.1093(6)$	$0.3536(4)$
H3	-0.084	0.3726
C4	$-0.1644(5)$	$0.4370(4)$
H4	-0.1815	0.5171
C5	$-0.1889(6)$	$0.3885(4)$
H5	-0.2244	0.4312
C6	$0.0080(5)$	$0.3572(4)$
H6	0.1073	0.35
C7	$-0.0737(5)$	$0.2566(4)$
C8	$-0.0274(6)$	$0.1447(4)$
H8	0.0683	0.122
C9	$-0.1364(6)$	$0.0664(4)$
H9	-0.1225	-0.0147
C10	$-0.2655(6)$	$0.1210(4)$
H10	-0.3511	0.082

$0.0133(5)$	$0.0432(14)$
0.1125	0.052^{*}
$-0.0643(6)$	$0.0361(13)$
$-0.0119(6)$	$0.0484(14)$
0.085	0.058^{*}
$-0.1182(6)$	$0.0540(15)$
-0.1002	0.065^{*}
$-0.2458(6)$	$0.0519(15)$
-0.3291	0.062^{*}
$0.4585(5)$	$0.0395(13)$
0.4843	0.047^{*}
$0.4056(5)$	$0.0340(13)$
$0.3957(6)$	$0.0505(15)$
0.4225	0.061^{*}
$0.3416(5)$	$0.0572(16)$
0.3265	0.069^{*}
$0.3131(6)$	$0.0570(16)$
0.2757	0.068^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0523(12)$	$0.0503(7)$	$0.0336(10)$	$-0.0004(5)$	$0.0017(7)$	$0.0045(5)$
S2	$0.0389(11)$	$0.0509(7)$	$0.0543(13)$	$-0.0039(6)$	$0.0041(7)$	$0.0047(6)$
N1	$0.048(3)$	$0.039(2)$	$0.043(3)$	$-0.0068(19)$	$0.002(2)$	$0.0083(19)$
N2	$0.040(3)$	$0.040(2)$	$0.053(3)$	$-0.0068(17)$	$0.009(2)$	$0.0027(19)$
C1	$0.055(4)$	$0.039(2)$	$0.037(3)$	$-0.008(2)$	$0.015(3)$	$0.003(2)$
C2	$0.028(3)$	$0.044(2)$	$0.037(3)$	$-0.0046(19)$	$0.007(2)$	$0.004(2)$
C3	$0.055(4)$	$0.045(2)$	$0.047(3)$	$0.000(3)$	$0.017(3)$	$0.001(3)$
C4	$0.047(4)$	$0.041(3)$	$0.075(4)$	$-0.001(2)$	$0.016(3)$	$0.002(3)$
C5	$0.041(3)$	$0.053(3)$	$0.061(4)$	$0.004(2)$	$0.007(3)$	$0.015(3)$
C6	$0.037(3)$	$0.042(3)$	$0.041(3)$	$0.001(2)$	$0.010(2)$	$0.001(2)$
C7	$0.030(3)$	$0.041(2)$	$0.032(3)$	$0.0031(19)$	$0.010(2)$	$0.005(2)$
C8	$0.045(3)$	$0.046(3)$	$0.065(4)$	$0.002(2)$	$0.022(3)$	$-0.002(3)$
C9	$0.083(5)$	$0.040(3)$	$0.054(4)$	$-0.004(3)$	$0.026(3)$	$-0.004(2)$
C10	$0.071(4)$	$0.051(3)$	$0.048(4)$	$-0.027(3)$	$0.007(3)$	$0.000(3)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 5$	$1.693(5)$	$\mathrm{C} 3-\mathrm{H} 3$	0.95
$\mathrm{~S} 1-\mathrm{C} 2$	$1.729(6)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.335(7)$
$\mathrm{S} 2-\mathrm{C} 10$	$1.685(5)$	$\mathrm{C} 4-\mathrm{H} 4$	0.95
$\mathrm{~S} 2-\mathrm{C} 7$	$1.728(5)$	$\mathrm{C} 5-\mathrm{H} 5$	0.95
$\mathrm{~N} 1-\mathrm{C} 1$	$1.280(5)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.432(6)$
$\mathrm{N} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.402(7)$	$\mathrm{C} 6-\mathrm{H} 6$	0.95
$\mathrm{~N} 2-\mathrm{C} 6$	$1.281(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.361(6)$
$\mathrm{N} 2-\mathrm{N} 2^{\mathrm{ii}}$	$1.412(7)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.406(7)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.431(6)$	$\mathrm{C} 8-\mathrm{H} 8$	0.95

C1-H1	0.95	C9-C10	1.377 (7)
C2-C3	1.364 (6)	C9-H9	0.95
C3-C4	1.429 (7)	C10-H10	0.95
C5-S1-C2	91.6 (3)	C4-C5-H5	123.3
C10-S2-C7	91.9 (3)	S1-C5-H5	123.3
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 1^{\text {i }}$	112.6 (5)	N2-C6-C7	121.6 (5)
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{N} 2{ }^{\text {ii }}$	112.5 (5)	N2-C6-H6	119.2
N1-C1-C2	121.8 (5)	C7-C6-H6	119.2
N1-C1-H1	119.1	C8-C7-C6	127.5 (5)
C2-C1-H1	119.1	C8-C7-S2	111.1 (4)
C3-C2-C1	126.8 (5)	C6-C7-S2	121.4 (3)
C3-C2-S1	110.4 (4)	C7-C8-C9	112.8 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$	122.7 (3)	C7-C8-H8	123.6
C2-C3-C4	112.9 (5)	C9-C8-H8	123.6
C2-C3-H3	123.6	C10-C9-C8	112.2 (5)
C4-C3-H3	123.6	C10-C9-H9	123.9
C5-C4-C3	111.7 (5)	C8-C9-H9	123.9
C5-C4-H4	124.1	C9-C10-S2	112.1 (4)
C3-C4-H4	124.1	C9-C10-H10	124.0
C4-C5-S1	113.5 (4)	S2-C10-H10	124.0

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{C} 8$	0.95	2.77	$3.683(7)$	161
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{C} 9$	0.95	2.85	$3.576(7)$	134
$\mathrm{C} 8 — \mathrm{H} 8 \cdots \mathrm{C} 4$ iii	0.95	2.77	$3.663(7)$	156

Symmetry code: (iii) $x+1 / 2,-y+1 / 2, z+1 / 2$.

