

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Acetylamino-1,3,4,6-tetra-O-(trimethylsilyl)-2-deoxy-a-D-glucopyranose

Zhao-Dong Cheng,^a Yan-Li Cui^{a*} and Jian-Wei Mao^b

^aDepartment of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China, and ^bZhejiang Provincial Key Lab for Chem. & Bio. Processing Technology of Farm Produce, Hangzhou, Zhejiang 310027, People's Republic of China

Correspondence e-mail: hnzzcyl@hotmail.com

Received 26 March 2013; accepted 8 May 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.055; wR factor = 0.149; data-to-parameter ratio = 11.1

The title compound, C₂₀H₄₇NO₆Si₄, was synthesized by per-Otrimethylsilylation of N-acetyl-D-glucosamine using chlorotrimethylsilane in the presence of hexamethyldisiloxane. The trimethylsilyl group and acetamido group are located on the same side of the pyran ring, showing an α -configuration glycoside. One of the trimethylsilyl groups is disordered over two orientations, with site-occupancy factors of 0.625 (9) and 0.375 (9). In the crystal, $N-H \cdots O$ hydrogen bonds link the molecules into supramolecular chains along the a-axis direction.

Related literature

For background to the title compound, see: Augé et al. (1985); Ronnow et al. (1994); Du & Gervais-Hague (2005); Wang et al. (2007); Witschi & Gervais-Hague (2010). For related structures, see: Odinokov et al. (2002); Hu et al. (2011). For the synthesis, see: Loganathan & Trivedi (1987); Jervis et al. (2010).

Experimental

Crystal data

C ₂₀ H ₄₇ NO ₆ Si ₄	$V = 3322.9 (5) \text{ Å}^3$
$M_r = 509.95$	Z = 4
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 9.4500 (7) Å	$\mu = 0.21 \text{ mm}^{-1}$
b = 12.8824 (9) Å	T = 293 K
c = 27.295 (3) Å	$0.38 \times 0.20 \times 0.19 \text{ mm}$

Data collection

Agilent Xcalibur (Atlas, Gemini 9896 measured reflections ultra) diffractometer 3438 independent reflections Absorption correction: multi-scan 2105 reflections with $I > 2\sigma(I)$ (CrysAlis PRO; Agilent, 2011) $R_{\rm int}=0.046$ $T_{\min} = 0.926, T_{\max} = 0.962$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	183 restraints
$wR(F^2) = 0.149$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
3438 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$
309 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O3^i$	0.86	2.03	2.855 (4)	160
C 1 (')	. 1 . 3	1.2		

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 2$.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

This work was supported financially by the National Science Foundation of China (No. 30870553) and the Key Inter-S&T Cooperation Project. national China (No. 2010DFA34370).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2199).

References

Agilent (2011). CrysAlis PRO, Agilent Technologies, Yarnton, England.

- Augé, C., David, S., Gautheron, C. & Veyrières, A. (1985). Tetrahedron Lett. 26, 2439-2440.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Du, W. & Gervais-Hague, J. (2005). Org. Lett. 7, 2063-2065.
- Hu, Y.-P., Lin, S.-Y., Huang, C.-Y., Zulueta, M. M., Liu, J.-Y., Chang, W. & Hung, S.-C. (2011). Nat. Chem. 3, 557-563.
- Jervis, P. J., Veerapen, N., Bricard, G., Cox, L. R., Porcelli, S. A. & Besra, G. S. (2010). Bioorg. Med. Chem. Lett. 20, 3475-3478.
- Loganathan, D. & Trivedi, G. K. (1987). Carbohydr. Res. 162, 117-125.
- Odinokov, V. N., Savchenko, R. G., Nazmeeva, S. R., Galyautdinov, I. V. & Khalilov, L. M. (2002). Russ. Chem. Bull. 51, 1937-1939.
- Ronnow, T. E. C. L., Meldal, M. & Bock, K. (1994). Carbohydr. Res. 260, 323-328.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, C.-C., Lee, J.-C., Luo, S.-Y., Kulkarni, S.-S., Huang, Y.-W., Lee, C.-C., Chang, K.-L. & Hung, S.-C. (2007). Nature, 446, 896-899.

Witschi, M. A. & Gervais-Hague, J. (2010). Org. Lett. 12, 4312-4315.

supporting information

Acta Cryst. (2013). E69, o917 [doi:10.1107/S160053681301266X]

2-Acetylamino-1,3,4,6-tetra-O-(trimethylsilyl)-2-deoxy-a-D-glucopyranose

Zhao-Dong Cheng, Yan-Li Cui and Jian-Wei Mao

S1. Comment

Per-O-trimethylsilylated glycopyranose was an useful intermediate for the construction of oligosaccharides and glycoconjugates (Du & Gervais-Hague, 2005). Per-trimethylsilylation of unprotected sugar could increase its solubility in organic solvents, and made selective acetylation available (Witschi *et al.*, 2010). Hu *et al.* have developed an one-pot α -glycoside method which also used per-O-trimethylsilylated glycosides as starting materials (Hu *et al.*, 2011; Wang *et al.*, 2007). Currently we have applied considerable effort towards the construction of α -glycosides (Augé *et al.*, 1985; Ronnow *et al.*, 1994; Jervis *et al.*, 2010). We have synthesized the title compound and report its crystal structure herein (for related structures, see: Odinokov *et al.*, 2002; Hu *et al.*, 2011).

The molecular structure of the title compound is shown in Fig. 1. In the molecule, the trimethylsilyl group and acetamido group are located on the same side of the pyran ring, showing α configuration glycoside. One of the trimethylsilyl group is disordered over two orientations with site-occupancy factors of 0.625 (9) and 0.375 (9). In the crystal structure, weak intermolecular N—H···O hydrogen bonds link the molecules into supramolecular chains along the *a* axis in the crystal (Fig. 2).

S2. Experimental

To a solution of N-acetyl-D-glucosamine (1.0 g, 4.52 mmol) in pyridine (10 mL), hexamethyldisiloxane (HMDS) (8.0 mL, 38.90 mmol) and chlorotrimethylsilane (TMSCl) (4.0 mL, 31.64 mmol) were added sequentially. The solution was stirred at 353 K under a nitrogen atmosphere for 2 hours. After cooling to rt the mixture was poured into ice-water and extracted with hexane. The organic layers were washed with brine, dried with MgSO₄, filtered, and concentrated in vacuum to furnish the crude product. The residue was purified by silica gel chromatography (petroether/ethyl acetate = 15:1) to afford the title compound. The crystal suitable for X-ray data collection was obtained by slow evaporation from a methanol solution (Jervis *et al.*, 2010; Loganathan *et al.*, 1987).

S3. Refinement

One of the trimethylsilyl group is disordered over two orientations with site-occupancy factors of 0.625 (9) and 0.375 (9). Some restraints and constraints had to be used to correct the geometry of the disordered components and the thermal parameters of the corresponding atoms. All H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97Å) and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl H atoms, and with $U_{iso}(H) = 1.2U_{eq}(C)$ for the remaining H atoms.

Figure 1

The molecular structure of the title compound with 30% probability displacement ellipsoids.

Figure 2

Crystal packing of the title compound showing N—H…O hydrogen bonds.

2-Acetylamino-1,3,4,6-tetra-O-(trimethylsilyl)-2-deoxy-a-D-glucopyranose

Crystal data

 $C_{20}H_{47}NO_6Si_4$ $M_r = 509.95$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 9.4500 (7) Å b = 12.8824 (9) Å c = 27.295 (3) Å V = 3322.9 (5) Å³ Z = 4

Data collection

Agilent Xcalibur (Atlas, Gemini ultra)	9896 measured reflections
diffractometer	3438 independent reflections
Radiation source: fine-focus sealed tube	2105 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.046$
Detector resolution: 10.3592 pixels mm ⁻¹	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
ω scans	$h = -11 \rightarrow 10$
Absorption correction: multi-scan	$k = -12 \rightarrow 15$
(CrysAlis PRO; Agilent, 2011)	$l = -30 \rightarrow 32$
$T_{\min} = 0.926, \ T_{\max} = 0.962$	
Refinement	

F(000) = 1112

 $\theta = 3.2 - 29.6^{\circ}$

 $\mu = 0.21 \text{ mm}^{-1}$ T = 293 K

Needle, colourless

 $0.38 \times 0.20 \times 0.19 \text{ mm}$

 $D_{\rm x} = 1.019 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1672 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.149$	neighbouring sites
S = 1.01	H-atom parameters constrained
3438 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0744P)^2 + 0.3973P]$
309 parameters	where $P = (F_o^2 + 2F_c^2)/3$
183 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Si1	1.01789 (16)	0.89841 (11)	0.87673 (6)	0.0716 (4)	
Si2	1.03616 (19)	0.43173 (13)	0.99519 (7)	0.0911 (6)	
Si3	0.9320 (2)	0.31145 (12)	0.84396 (7)	0.0842 (5)	
Si4	0.5209 (19)	0.5532 (8)	0.7757 (5)	0.1318 (13)	0.625 (9)

01	0.7944 (3)	0.6870 (3)	0.85017 (13)	0.0726 (9)
02	0.9849 (3)	0.7739 (2)	0.88456 (12)	0.0662 (9)
03	0.7055 (3)	0.7511 (5)	1.00819 (18)	0.1157 (16)
04	0.9211 (3)	0.4785 (3)	0.95578 (13)	0.0731 (10)
05	0.9704 (4)	0.4351 (3)	0.85373 (13)	0.0751 (9)
06	0.6763 (5)	0.5183 (4)	0.79227 (17)	0.1117 (16)
N1	0.9130 (3)	0.7012 (3)	0.97859 (14)	0.0604 (11)
H1	1.0030	0.6991	0.9831	0.072*
C1	0.8492 (5)	0.7328(4)	0.8930 (2)	0.0646 (13)
H1A	0.7863	0.7895	0.9029	0.077*
C2	0.8562 (4)	0.6535 (4)	0.93482 (18)	0.0581 (12)
H2	0.7590	0.6320	0.9421	0.070*
C3	0.9380 (4)	0.5563(4)	0.91906(17)	0.0593(12)
H3	1 0386	0.5733	0.9156	0.071*
C4	0.8818 (5)	0.5161 (4)	0.87110 (18)	0.071
H4	0.7863	0.4886	0.8762	0.073*
C5	0.8759 (5)	0.4000	0.8702 0.83238(19)	0.0690 (14)
Н5	0.0733	0.6250	0.8253	0.0000 (14)
C6	1 0050 (8)	0.0250	0.0255 0.9361 (2)	0.003
Нба	0.9109	0.9591	0.9301 (2)	0.115 (2)
H6R	1.0262	1.0386	0.9316	0.170*
H6C	1.0202	0.9366	0.9588	0.170*
C7	1.0714	0.9046 (5)	0.8523 (2)	0.170 0.0070 (10)
	1.1964 (0)	0.9040 (5)	0.8525 (2)	0.0970 (19)
H7R	1.2048	0.0726	0.8302	0.146*
	1.2150	0.9720	0.8392	0.146*
11/C	0.8876 (7)	0.0521 (5)	0.8209 0.8333(3)	0.140°
	0.8870(7)	0.9521 (5)	0.8355 (5)	0.113(2) 0.160*
ПОА	0.0002	1.0140	0.8082	0.169*
	0.9231	0.0684	0.8180	0.109
	0.0017	0.9084	1.0110(2)	0.109°
C9	0.8343(3)	0.7478(3)	1.0119(2) 1.0546(2)	0.0713(13) 0.0870(17)
	0.9080 (0)	0.7903(3)	1.0340 (2)	0.0879(17)
	0.9303	0.8010	1.0440	0.132*
	0.9812	0.7303	1.0002	0.132*
HIUC C11	0.841/	0.8092	1.0804	0.132^{*}
	1.0401 (9)	0.5095 (7)	1.0526 (2)	0.140 (3)
HIIA	1.0800	0.5780	1.0452	0.209*
HIIB	1.1097	0.4765	1.0/52	0.209*
HIIC C12	0.9537	0.5141	1.06/1	0.209*
C12	1.2153 (7)	0.4319 (6)	0.9680 (3)	0.129 (3)
HI2A	1.2113	0.4030	0.9356	0.194*
HI2B	1.2776	0.3909	0.9880	0.194*
HI2C	1.2500	0.5018	0.9663	0.194*
CI3	0.9806 (11)	0.2963 (6)	1.0071 (4)	0.163 (4)
HIJA	0.8920	0.2963	1.0243	0.245*
HI3B	1.0511	0.2621	1.0266	0.245*
HI3C	0.9698	0.2603	0.9765	0.245*
C14	1.0962 (9)	0.2396 (5)	0.8588 (3)	0.132 (3)

H14A	1.1755	0.2733	0.8436	0.198*	
H14B	1.0888	0.1697	0.8468	0.198*	
H14C	1.1094	0.2384	0.8937	0.198*	
C15	0.7800 (8)	0.2703 (6)	0.8809 (3)	0.124 (3)	
H15A	0.7923	0.2935	0.9140	0.185*	
H15B	0.7732	0.1959	0.8803	0.185*	
H15C	0.6950	0.2998	0.8676	0.185*	
C16	0.8882 (11)	0.2878 (5)	0.7775 (3)	0.140 (3)	
H16A	0.8026	0.3239	0.7692	0.210*	
H16B	0.8754	0.2147	0.7721	0.210*	
H16C	0.9642	0.3126	0.7573	0.210*	
C17	0.8067 (7)	0.5670 (5)	0.7852 (2)	0.0922 (18)	
H17A	0.7933	0.6271	0.7643	0.111*	
H17B	0.8697	0.5195	0.7683	0.111*	
C18A	0.4994 (16)	0.7084 (13)	0.7939 (6)	0.161 (3)	0.625 (9)
H18A	0.5411	0.7212	0.8254	0.242*	0.625 (9)
H18B	0.4013	0.7276	0.7946	0.242*	0.625 (9)
H18C	0.5476	0.7488	0.7695	0.242*	0.625 (9)
C19	0.5118 (19)	0.5859 (15)	0.7098 (5)	0.151 (3)	0.625 (9)
H19A	0.5719	0.6443	0.7032	0.226*	0.625 (9)
H19B	0.4161	0.6028	0.7012	0.226*	0.625 (9)
H19C	0.5428	0.5275	0.6908	0.226*	0.625 (9)
C20A	0.3849 (15)	0.4802 (14)	0.8078 (6)	0.170 (3)	0.625 (9)
H20A	0.3810	0.4162	0.7898	0.255*	0.625 (9)
H20B	0.2932	0.5124	0.8076	0.255*	0.625 (9)
H20C	0.4128	0.4665	0.8410	0.255*	0.625 (9)
Si4A	0.515 (3)	0.5685 (12)	0.7787 (8)	0.1318 (13)	0.375 (9)
C18	0.445 (3)	0.639 (2)	0.8231 (9)	0.161 (3)	0.375 (9)
H18D	0.4651	0.6110	0.8550	0.242*	0.375 (9)
H18E	0.3448	0.6441	0.8186	0.242*	0.375 (9)
H18F	0.4868	0.7069	0.8204	0.242*	0.375 (9)
C20	0.432 (3)	0.4260 (15)	0.7663 (10)	0.170 (3)	0.375 (9)
H20D	0.4911	0.3823	0.7465	0.255*	0.375 (9)
H20E	0.3431	0.4366	0.7502	0.255*	0.375 (9)
H20F	0.4164	0.3934	0.7975	0.255*	0.375 (9)
C19A	0.480 (3)	0.526 (3)	0.7151 (9)	0.151 (3)	0.375 (9)
H19D	0.5197	0.5750	0.6926	0.226*	0.375 (9)
H19E	0.3795	0.5215	0.7100	0.226*	0.375 (9)
H19F	0.5217	0.4589	0.7098	0.226*	0.375 (9)
					~ /

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Si1	0.0804 (9)	0.0542 (8)	0.0802 (9)	-0.0045 (7)	0.0034 (8)	0.0013 (8)	
Si2	0.1054 (12)	0.0709 (10)	0.0970 (12)	0.0005 (9)	-0.0386 (10)	0.0153 (9)	
Si3	0.1152 (12)	0.0534 (8)	0.0839 (10)	-0.0089 (9)	-0.0044 (10)	-0.0025 (8)	
Si4	0.1162 (18)	0.180 (3)	0.0987 (19)	0.026 (3)	-0.0233 (15)	-0.043 (2)	
01	0.078 (2)	0.058 (2)	0.082 (2)	0.0030 (19)	-0.0269 (19)	0.001 (2)	

supporting information

O2	0.0583 (17)	0.0556 (19)	0.085 (2)	-0.0022 (15)	-0.0030 (16)	-0.0010 (17)
03	0.0407 (19)	0.177 (4)	0.129 (4)	0.011 (2)	0.009 (2)	-0.036(3)
04	0.0725 (19)	0.068 (2)	0.079 (2)	-0.0113 (19)	-0.0134 (18)	0.0178 (19)
05	0.087 (2)	0.0523 (18)	0.086 (2)	0.0013 (19)	-0.0010 (19)	0.0020 (18)
06	0.130 (3)	0.094 (3)	0.111 (3)	-0.025 (3)	-0.054 (3)	0.004 (3)
N1	0.0321 (15)	0.079 (3)	0.070 (3)	0.0023 (19)	0.0012 (18)	-0.009(2)
C1	0.054 (3)	0.059 (3)	0.080 (4)	0.006 (2)	-0.008 (2)	-0.004 (3)
C2	0.038 (2)	0.069 (3)	0.067 (3)	-0.001 (2)	-0.005 (2)	0.000 (3)
C3	0.048 (2)	0.058 (3)	0.072 (3)	-0.005 (2)	-0.005 (2)	0.010 (3)
C4	0.064 (3)	0.052 (3)	0.067 (3)	-0.008 (2)	-0.009 (2)	0.000 (3)
C5	0.076 (3)	0.057 (3)	0.074 (3)	-0.001 (3)	-0.008 (3)	0.000 (3)
C6	0.158 (6)	0.078 (4)	0.104 (5)	-0.008 (4)	0.023 (5)	-0.022 (4)
C7	0.100 (4)	0.096 (5)	0.095 (4)	-0.015 (4)	-0.003 (4)	0.010 (4)
C8	0.112 (5)	0.074 (4)	0.153 (7)	0.011 (4)	-0.012 (4)	0.027 (5)
C9	0.047 (3)	0.088 (4)	0.080 (4)	0.002 (3)	0.005 (3)	0.004 (3)
C10	0.073 (3)	0.116 (5)	0.074 (4)	0.005 (4)	0.008 (3)	-0.014 (4)
C11	0.167 (7)	0.158 (7)	0.093 (5)	0.037 (6)	-0.053 (5)	0.003 (5)
C12	0.099 (5)	0.118 (6)	0.172 (7)	0.030 (5)	-0.046 (5)	0.004 (6)
C13	0.186 (8)	0.117 (6)	0.186 (9)	-0.038 (6)	-0.079 (7)	0.073 (6)
C14	0.157 (6)	0.056 (4)	0.183 (9)	0.009 (4)	-0.006 (6)	-0.007 (5)
C15	0.148 (6)	0.089 (5)	0.134 (6)	-0.038 (5)	0.013 (5)	-0.015 (5)
C16	0.244 (10)	0.087 (5)	0.089 (5)	-0.013 (6)	-0.029 (6)	-0.012 (4)
C17	0.128 (5)	0.076 (4)	0.072 (4)	-0.005 (4)	-0.026 (4)	0.002 (3)
C18A	0.143 (5)	0.204 (7)	0.137 (6)	0.032 (5)	-0.018 (5)	-0.040 (5)
C19	0.128 (5)	0.202 (7)	0.122 (5)	0.031 (6)	-0.036 (4)	-0.032 (6)
C20A	0.145 (5)	0.218 (7)	0.148 (6)	0.008 (6)	-0.015 (5)	-0.032 (6)
Si4A	0.1162 (18)	0.180 (3)	0.0987 (19)	0.026 (3)	-0.0233 (15)	-0.043 (2)
C18	0.143 (5)	0.204 (7)	0.137 (6)	0.032 (5)	-0.018 (5)	-0.040 (5)
C20	0.145 (5)	0.218 (7)	0.148 (6)	0.008 (6)	-0.015 (5)	-0.032 (6)
C19A	0.128 (5)	0.202 (7)	0.122 (5)	0.031 (6)	-0.036 (4)	-0.032 (6)

Geometric parameters (Å, °)

Sil—O2	1.649 (4)	C9—C10	1.498 (8)
Sil—C7	1.833 (6)	C10—H10A	0.9600
Sil—C8	1.845 (7)	C10—H10B	0.9600
Sil—C6	1.847 (6)	C10—H10C	0.9600
Si204	1.644 (4)	C11—H11A	0.9600
Si2—C12	1.848 (8)	C11—H11B	0.9600
Si2—C13	1.851 (8)	C11—H11C	0.9600
Si2-C11	1.863 (7)	C12—H12A	0.9600
Si3—O5	1.655 (4)	C12—H12B	0.9600
Si3—C15	1.833 (7)	C12—H12C	0.9600
Si3—C14	1.851 (8)	C13—H13A	0.9600
Si3—C16	1.886 (7)	C13—H13B	0.9600
Si4—06	1.60 (2)	C13—H13C	0.9600
Si4-C18	1.846 (10)	C14—H14A	0.9600
Si4—C19	1.850 (9)	C14—H14B	0.9600

Si4—C20	1.858 (10)	C14—H14C	0.9600
01—C1	1.408 (6)	С15—Н15А	0.9600
O1—C5	1.432 (6)	С15—Н15В	0.9600
O2—C1	1.406 (6)	C15—H15C	0.9600
O3—C9	1.224 (5)	C16—H16A	0.9600
O4—C3	1.427 (5)	C16—H16B	0.9600
O5—C4	1.419 (6)	C16—H16C	0.9600
O6—C17	1.396 (7)	C17—H17A	0.9700
O6—Si4A	1.69 (3)	C17—H17B	0.9700
N1—C9	1.317 (6)	C18A—Si4A	1.856 (10)
N1—C2	1.447 (6)	C18A—H18A	0.9600
N1—H1	0.8600	C18A—H18B	0.9600
C1—C2	1.532 (7)	C18A—H18C	0.9600
C1—H1A	0.9800	С19—Н19А	0.9600
C2—C3	1.533 (6)	С19—Н19В	0.9600
C2—H2	0.9800	С19—Н19С	0.9600
C3—C4	1.505 (6)	C20A—Si4A	1.856 (10)
С3—Н3	0.9800	C20A—H20A	0.9600
C4—C5	1.525 (7)	C20A—H20B	0.9600
C4—H4	0.9800	C20A—H20C	0.9600
C5—C17	1.511 (7)	Si4A—C19A	1.851 (10)
С5—Н5	0.9800	C18—H18D	0.9600
С6—Н6А	0.9600	C18—H18E	0.9600
С6—Н6В	0.9600	C18—H18F	0.9600
С6—Н6С	0.9600	C20—H20D	0.9600
С7—Н7А	0.9600	С20—Н20Е	0.9600
С7—Н7В	0.9600	C20—H20F	0.9600
С7—Н7С	0.9600	C19A—H19D	0.9600
C8—H8A	0.9600	C19A—H19E	0.9600
C8—H8B	0.9600	C19A—H19F	0.9600
C8—H8C	0.9600		
O2—Si1—C7	105.4 (3)	Si1—C8—H8C	109.5
O2—Si1—C8	108.8 (3)	H8A—C8—H8C	109.5
C7—Si1—C8	111.8 (3)	H8B—C8—H8C	109.5
O2—Si1—C6	109.6 (3)	O3—C9—N1	121.3 (5)
C7—Si1—C6	111.1 (3)	O3—C9—C10	121.0 (5)
C8—Si1—C6	110.1 (4)	N1—C9—C10	117.7 (4)
O4—Si2—C12	110.0 (3)	C9—C10—H10A	109.5
O4—Si2—C13	105.8 (3)	C9—C10—H10B	109.5
C12—Si2—C13	109.4 (4)	H10A—C10—H10B	109.5
O4—Si2—C11	112.8 (3)	C9—C10—H10C	109.5
C12—Si2—C11	106.9 (4)	H10A—C10—H10C	109.5
C13—Si2—C11	111.9 (5)	H10B—C10—H10C	109.5
O5—Si3—C15	111.2 (3)	Si2—C11—H11A	109.5
O5—Si3—C14	105.2 (3)	Si2—C11—H11B	109.5
C15—Si3—C14	113.1 (4)	H11A—C11—H11B	109.5
O5—Si3—C16	111.0 (3)	Si2—C11—H11C	109.5

C15—Si3—C16	108.0 (4)	H11A—C11—H11C	109.5
C14—Si3—C16	108.3 (4)	H11B—C11—H11C	109.5
O6—Si4—C18	109.0 (12)	Si2—C12—H12A	109.5
O6—Si4—C19	112.4 (9)	Si2—C12—H12B	109.5
C18—Si4—C19	121.8 (15)	H12A—C12—H12B	109.5
O6—Si4—C20	101.9 (11)	Si2—C12—H12C	109.5
C18—Si4—C20	116.8 (15)	H12A—C12—H12C	109.5
C19—Si4—C20	92.6 (13)	H12B—C12—H12C	109.5
C1-01-C5	114.0 (3)	Si2—C13—H13A	109.5
C1-02-Si1	124.1 (3)	Si2—C13—H13B	109.5
C3—O4—Si2	130.0 (3)	H13A—C13—H13B	109.5
C4—O5—Si3	129.2 (3)	Si2—C13—H13C	109.5
C17—O6—Si4	130.2 (5)	H13A—C13—H13C	109.5
C17—O6—Si4A	126.2 (7)	H13B—C13—H13C	109.5
C9—N1—C2	123.7 (4)	Si3—C14—H14A	109.5
C9—N1—H1	118.2	Si3—C14—H14B	109.5
C2—N1—H1	118.2	H14A—C14—H14B	109.5
02—C1—O1	110.9 (4)	Si3—C14—H14C	109.5
02—C1—C2	109.5 (3)	H14A—C14—H14C	109.5
01—C1—C2	110.8 (4)	H14B—C14—H14C	109.5
O2—C1—H1A	108.5	Si3—C15—H15A	109.5
01—C1—H1A	108.5	Si3—C15—H15B	109.5
C2—C1—H1A	108.5	H15A—C15—H15B	109.5
N1—C2—C1	110.3 (4)	Si3—C15—H15C	109.5
N1—C2—C3	113.1 (3)	H15A—C15—H15C	109.5
C1—C2—C3	110.9 (4)	H15B—C15—H15C	109.5
N1—C2—H2	107.4	Si3—C16—H16A	109.5
С1—С2—Н2	107.4	Si3—C16—H16B	109.5
С3—С2—Н2	107.4	H16A—C16—H16B	109.5
O4—C3—C4	109.2 (4)	Si3—C16—H16C	109.5
O4—C3—C2	108.7 (4)	H16A—C16—H16C	109.5
C4—C3—C2	110.3 (4)	H16B—C16—H16C	109.5
O4—C3—H3	109.5	O6—C17—C5	113.3 (5)
С4—С3—Н3	109.5	O6—C17—H17A	108.9
С2—С3—Н3	109.5	C5—C17—H17A	108.9
O5—C4—C3	109.6 (4)	O6—C17—H17B	108.9
O5—C4—C5	108.6 (4)	C5—C17—H17B	108.9
C3—C4—C5	111.6 (4)	H17A—C17—H17B	107.7
O5—C4—H4	109.0	Si4A—C18A—H18A	109.5
C3—C4—H4	109.0	Si4A—C18A—H18B	109.5
C5—C4—H4	109.0	H18A—C18A—H18B	109.5
01—C5—C17	106.4 (4)	Si4A—C18A—H18C	109.5
01—C5—C4	109.9 (4)	H18A—C18A—H18C	109.5
C17—C5—C4	113.4 (4)	H18B—C18A—H18C	109.5
O1—C5—H5	109.0	Si4A—C20A—H20A	109.5
С17—С5—Н5	109.0	Si4A—C20A—H20B	109.5
С4—С5—Н5	109.0	H20A—C20A—H20B	109.5
Si1—C6—H6A	109.5	Si4A—C20A—H20C	109.5

Si1—C6—H6B H6A—C6—H6B Si1—C6—H6C H6A—C6—H6C Si1—C7—H7A Si1—C7—H7B H7A—C7—H7B Si1—C7—H7C H7A—C7—H7C H7A—C7—H7C H7B—C7—H7C	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	H20A—C20A—H20C H20B—C20A—H20C O6—Si4A—C19A O6—Si4A—C18A C19A—Si4A—C18A O6—Si4A—C20A C19A—Si4A—C20A C18A—Si4A—C20A Si4A—C19A—H19D Si4A—C19A—H19E H19D—C19A—H19E	109.5 109.5 104.8 (14) 113.3 (14) 118.8 (17) 105.7 (12) 95.6 (16) 116.5 (14) 109.5 109.5
Si1—C7—H7C	109.5	Si4A—C19A—H19D	109.5
H7A—C7—H7C	109.5	Si4A—C19A—H19E	109.5
H7B—C7—H7C	109.5	H19D—C19A—H19E	109.5
Si1—C8—H8A	109.5	Si4A—C19A—H19F	109.5
Si1—C8—H8B	109.5	H19D—C19A—H19F	109.5
H8A—C8—H8B	109.5	H19E—C19A—H19F	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1…O3 ⁱ	0.86	2.03	2.855 (4)	160

Symmetry code: (i) x+1/2, -y+3/2, -z+2.