organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(5-Nitro-1,3-thia­zol-2-yl)-4-(tri­fluoro­meth­yl)benzamide

aKey Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Animal Science and Veterinary Pharmaceutics of CAAS, Lanzhou 730050, People's Republic of China
*Correspondence e-mail: lijy1971@163.com

(Received 16 April 2013; accepted 25 April 2013; online 22 May 2013)

There are two independent and conformationally dissimilar mol­ecules (A and B) in the asymmetric unit of the title compound, C11H6F3N3O3S; the dihedral angles between the benzene and thia­zole rings are 33.8 (2)° in A and 59.7 (2)° in B. The similarity of the C—N bond lengths in the amide group [1.379 (5) and 1.358 (5) Å for A, and 1.365 (5) and 1.363 (5) Å for B] indicates the presence of conjugation between the two rings. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, forming chains extending along [010]; weak N—H⋯Oamide inter­actions are also present in the structure.

Related literature

For the anti­parasitic activity of nitazoxanide, see: Fox & Saravolatz (2005[Fox, L. M. & Saravolatz, L. D. (2005). Clin. Infect. Dis. 40, 1173-1180.]) and for the anti­bacterial activity of thia­zolides, see: Gargala et al. (2010[Gargala, G., Le Goff, L., Ballet, J. J., Favennec, L., Stachulski, A. V. & Rossignol, J. F. (2010). Antimicrob. Agents Chemother. 54, 1315-1318.]); Stachulski et al. (2011[Stachulski, A. V., Pidathala, C., Row, E. C., Sharma, R., Berry, N. G., Iqbal, M., Bentley, J., Allman, S. A., Edwards, G., Helm, A., Hellier, J., Korba, B. E., Semple, J. E. & Rossignol, J. F. (2011). J. Med. Chem. 54, 4119-4132.]). For the synthesis and anti­bacterial activity of the title compound, see: Ballard et al. (2011[Ballard, T. E., Wang, X., Olekhnovich, I., Koerner, T., Seymour, C., Salamoun, J., Warthan, M., Hoffman, P. S. & Macdonald, T. L. (2011). ChemMedChem, 6, 362-377.]).

[Scheme 1]

Experimental

Crystal data
  • C11H6F3N3O3S

  • Mr = 317.26

  • Monoclinic, P 21 /c

  • a = 12.362 (4) Å

  • b = 8.946 (3) Å

  • c = 23.261 (8) Å

  • β = 100.762 (4)°

  • V = 2527.2 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.34 × 0.32 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.903, Tmax = 0.927

  • 11671 measured reflections

  • 4588 independent reflections

  • 3183 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.175

  • S = 1.06

  • 4588 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N5i 0.86 2.32 3.044 (5) 142
N1—H1⋯O3i 0.86 2.57 3.023 (5) 115
N4—H4⋯N2ii 0.86 2.18 2.939 (5) 147
N4—H4⋯O2 0.86 2.62 3.146 (5) 121
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Parasitic and bacterial infections represnt a significant cause of morbidity and mortality worldwide (Fox & Saravolatz, 2005). Nitazoxanide is a novel antiparasitic compound developed for both human and animal use and is the parent compound of a class of drugs named thiazolides. Recently, a number of thiazolides were synthesized and their biological activities were also evaluated (Gargala et al., 2010); Stachulski et al., 2011). The title compound C11H6F3N3O3S is a new thiazolide which displays higher antibacterial activity than nitazoxanide (Ballard et al., 2011) and the crystal structure is reported herein.

In this structure, there are two independent and conformationally dissimilar molecules in the asymmetric unit (Fig. 1) [dihedral angles between the benzene and thiazole rings: 33.8 (2) and 59.7 (2)°]. In the crystal, the molecules are linked by intermolecular N—H···N hydrogen bonds (Table 2), giving one-dimensional chains extending along [010]. Also present in the structure are intra- and intermolecular N—H···Oamide interactions within the chains.

The similarity of the C—N bond lengths [N1—C8, 1.379 (5) Å and N1—C9, 1.358 (5) Å] in the amide group indicates the presence of conjugation between the two rings, which confirms the hypothetical mechanism with thiazolides that the amin anion may interact with the target PFOR enzyme.

Related literature top

For the antiparasitic activity of nitazoxanide, see: Fox & Saravolatz (2005) and for the antibacterial activity of thiazolides, see: Gargala et al. (2010); Stachulski et al. (2011). For the synthesis and antibacterial activity of the title compound, see: Ballard et al. (2011).

Experimental top

To a solution of 5-nitrothiazol-2-amine (1 mmol) in distilled pyridine was added a equimolar amount of 4-trifluorobenzoyl chloride with stirring. After the addition was complete, the reaction mixture was allowed to stand overnight. The reaction was judged complete by TLC analysis. The crude product that separated on dilution was filtered, washed with 10% sodium bicarbonate solution, then several times with water. The dry solid was purified by chromatography to give the pure title compound and crystals suitable for single crystal X-ray analysis were obtained by recrystallization from methanol.

Refinement top

The positions of all H atoms were determined geometrically and refined using a riding model with C—H = 0.93 Å and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom numbering scheme for the two independent molecules in the asymmetric unit of title compound, with displacement ellipsoids drawn at the 30% probability level.
N-(5-Nitro-1,3-thiazol-2-yl)-4-(trifluoromethyl)benzamide top
Crystal data top
C11H6F3N3O3SF(000) = 1280
Mr = 317.26Dx = 1.668 Mg m3
Monoclinic, P21/cMelting point = 487–489 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.362 (4) ÅCell parameters from 2723 reflections
b = 8.946 (3) Åθ = 2.4–24.6°
c = 23.261 (8) ŵ = 0.31 mm1
β = 100.762 (4)°T = 296 K
V = 2527.2 (15) Å3Block, colourless
Z = 80.34 × 0.32 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
4588 independent reflections
Radiation source: fine-focus sealed tube3183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.903, Tmax = 0.927k = 910
11671 measured reflectionsl = 2826
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0692P)2 + 3.2322P]
where P = (Fo2 + 2Fc2)/3
4588 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C11H6F3N3O3SV = 2527.2 (15) Å3
Mr = 317.26Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.362 (4) ŵ = 0.31 mm1
b = 8.946 (3) ÅT = 296 K
c = 23.261 (8) Å0.34 × 0.32 × 0.25 mm
β = 100.762 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
4588 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3183 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.927Rint = 0.039
11671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.06Δρmax = 0.50 e Å3
4588 reflectionsΔρmin = 0.48 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2871 (3)0.2306 (5)0.10652 (16)0.0387 (10)
C20.2390 (3)0.1247 (5)0.06679 (17)0.0448 (11)
H20.17990.06870.07430.054*
C30.2787 (4)0.1018 (5)0.01590 (18)0.0483 (11)
H30.24670.02960.01070.058*
C40.3654 (3)0.1855 (5)0.00447 (18)0.0471 (11)
C50.4138 (4)0.2911 (6)0.0439 (2)0.0549 (13)
H50.47210.34810.03600.066*
C60.3758 (3)0.3125 (5)0.09514 (19)0.0498 (12)
H60.40980.38210.12230.060*
C70.4053 (5)0.1639 (8)0.0515 (2)0.0687 (16)
C80.2493 (3)0.2599 (5)0.16232 (17)0.0391 (10)
C90.0895 (3)0.2764 (5)0.20673 (16)0.0357 (9)
C100.0463 (4)0.3137 (5)0.25281 (17)0.0459 (11)
H100.11900.31520.25830.055*
C110.0372 (3)0.3595 (5)0.29379 (16)0.0388 (10)
C120.3086 (3)0.8380 (5)0.34839 (17)0.0401 (10)
C130.3064 (4)0.7008 (5)0.32116 (18)0.0461 (11)
H130.28200.61660.33840.055*
C140.3405 (4)0.6892 (5)0.26822 (19)0.0490 (11)
H140.34040.59650.25020.059*
C150.3746 (3)0.8129 (5)0.24206 (18)0.0436 (10)
C160.3762 (4)0.9502 (6)0.2691 (2)0.0554 (12)
H160.39841.03480.25120.066*
C170.3448 (4)0.9620 (6)0.32261 (19)0.0545 (12)
H170.34811.05410.34140.065*
C180.4075 (4)0.8034 (7)0.1841 (2)0.0587 (13)
C190.2738 (3)0.8557 (5)0.40602 (17)0.0426 (10)
C200.1252 (3)0.8112 (5)0.45709 (16)0.0377 (9)
C210.0747 (4)0.8551 (5)0.54822 (17)0.0417 (10)
C220.0063 (4)0.7988 (5)0.50768 (17)0.0454 (11)
H220.07630.77930.51510.054*
F10.4126 (4)0.0182 (5)0.06394 (15)0.1155 (15)
F20.3376 (3)0.2148 (5)0.09695 (13)0.0960 (12)
F30.5002 (3)0.2196 (7)0.05158 (16)0.158 (2)
F40.4257 (4)0.6685 (5)0.16786 (16)0.1311 (18)
F50.3324 (4)0.8501 (5)0.14227 (14)0.1252 (17)
F60.4934 (4)0.8772 (8)0.18052 (17)0.184 (3)
N10.1382 (3)0.2403 (4)0.16086 (13)0.0382 (8)
H10.09820.20390.12980.046*
N20.0176 (3)0.2646 (4)0.20246 (14)0.0445 (9)
N30.0305 (3)0.4175 (4)0.34971 (15)0.0446 (9)
N40.1728 (3)0.7979 (4)0.40900 (13)0.0416 (9)
H40.13750.75070.37910.050*
N50.0219 (3)0.7725 (4)0.45493 (14)0.0437 (9)
N60.0665 (4)0.8983 (4)0.60621 (15)0.0503 (10)
O10.3090 (2)0.3016 (4)0.20642 (12)0.0560 (9)
O20.1160 (3)0.4596 (4)0.38111 (13)0.0638 (9)
O30.0597 (3)0.4226 (4)0.36369 (13)0.0587 (9)
O40.3288 (2)0.9184 (4)0.44772 (13)0.0632 (10)
O50.1513 (3)0.9334 (4)0.63961 (14)0.0713 (11)
O60.0250 (3)0.8991 (4)0.61955 (13)0.0647 (10)
S10.16224 (9)0.34362 (13)0.27209 (4)0.0429 (3)
S20.19504 (9)0.88052 (14)0.52279 (4)0.0469 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (2)0.045 (3)0.035 (2)0.0080 (19)0.0076 (17)0.0032 (19)
C20.046 (3)0.046 (3)0.045 (2)0.001 (2)0.014 (2)0.002 (2)
C30.051 (3)0.051 (3)0.044 (2)0.002 (2)0.012 (2)0.006 (2)
C40.041 (2)0.062 (3)0.039 (2)0.012 (2)0.0087 (19)0.004 (2)
C50.041 (3)0.072 (4)0.056 (3)0.003 (2)0.020 (2)0.000 (3)
C60.041 (2)0.061 (3)0.048 (3)0.008 (2)0.010 (2)0.011 (2)
C70.063 (3)0.103 (5)0.046 (3)0.000 (3)0.024 (3)0.009 (3)
C80.041 (2)0.041 (3)0.036 (2)0.0028 (19)0.0087 (18)0.0055 (19)
C90.043 (2)0.034 (2)0.0299 (19)0.0021 (18)0.0073 (17)0.0037 (17)
C100.044 (2)0.058 (3)0.037 (2)0.001 (2)0.0133 (19)0.001 (2)
C110.048 (2)0.040 (3)0.030 (2)0.0028 (19)0.0099 (18)0.0008 (17)
C120.030 (2)0.049 (3)0.041 (2)0.0009 (19)0.0060 (17)0.004 (2)
C130.051 (3)0.044 (3)0.045 (2)0.000 (2)0.016 (2)0.002 (2)
C140.051 (3)0.048 (3)0.050 (3)0.004 (2)0.016 (2)0.006 (2)
C150.038 (2)0.053 (3)0.040 (2)0.004 (2)0.0078 (18)0.003 (2)
C160.064 (3)0.049 (3)0.056 (3)0.007 (2)0.018 (2)0.005 (2)
C170.068 (3)0.047 (3)0.053 (3)0.005 (2)0.023 (2)0.008 (2)
C180.059 (3)0.074 (4)0.045 (3)0.003 (3)0.016 (2)0.005 (3)
C190.039 (2)0.050 (3)0.037 (2)0.002 (2)0.0039 (18)0.003 (2)
C200.039 (2)0.042 (3)0.031 (2)0.0013 (19)0.0056 (17)0.0026 (18)
C210.056 (3)0.037 (3)0.033 (2)0.001 (2)0.0115 (19)0.0004 (18)
C220.050 (3)0.051 (3)0.039 (2)0.000 (2)0.0152 (19)0.003 (2)
F10.169 (4)0.117 (3)0.075 (2)0.048 (3)0.059 (2)0.008 (2)
F20.112 (3)0.133 (3)0.0448 (17)0.011 (2)0.0194 (17)0.0211 (19)
F30.090 (3)0.313 (7)0.089 (3)0.080 (4)0.064 (2)0.076 (3)
F40.226 (5)0.101 (3)0.092 (3)0.061 (3)0.098 (3)0.013 (2)
F50.147 (4)0.181 (4)0.0498 (19)0.073 (3)0.024 (2)0.027 (2)
F60.158 (4)0.329 (8)0.090 (3)0.157 (5)0.085 (3)0.081 (4)
N10.0384 (19)0.046 (2)0.0310 (17)0.0039 (16)0.0083 (14)0.0060 (15)
N20.038 (2)0.062 (3)0.0349 (18)0.0076 (18)0.0106 (15)0.0049 (17)
N30.065 (3)0.036 (2)0.0355 (19)0.0040 (18)0.0157 (19)0.0006 (16)
N40.0377 (19)0.055 (2)0.0325 (17)0.0058 (16)0.0077 (14)0.0091 (16)
N50.044 (2)0.053 (2)0.0353 (18)0.0043 (18)0.0119 (15)0.0030 (16)
N60.081 (3)0.034 (2)0.037 (2)0.002 (2)0.014 (2)0.0004 (17)
O10.0428 (17)0.088 (3)0.0343 (16)0.0002 (17)0.0013 (13)0.0087 (16)
O20.078 (2)0.073 (3)0.0379 (17)0.006 (2)0.0045 (17)0.0150 (17)
O30.073 (2)0.056 (2)0.0556 (19)0.0123 (17)0.0336 (17)0.0024 (16)
O40.0457 (18)0.097 (3)0.0468 (18)0.0171 (18)0.0080 (15)0.0243 (18)
O50.101 (3)0.070 (3)0.0410 (18)0.009 (2)0.0067 (19)0.0184 (17)
O60.092 (3)0.058 (2)0.054 (2)0.0106 (19)0.0380 (19)0.0038 (16)
S10.0430 (6)0.0545 (8)0.0309 (5)0.0044 (5)0.0063 (4)0.0053 (5)
S20.0490 (7)0.0570 (8)0.0335 (5)0.0026 (6)0.0046 (5)0.0070 (5)
Geometric parameters (Å, º) top
C1—C21.379 (6)C13—C141.378 (6)
C1—C61.385 (6)C13—H130.9300
C1—C81.483 (5)C14—C151.367 (6)
C2—C31.378 (6)C14—H140.9300
C2—H20.9300C15—C161.379 (6)
C3—C41.374 (6)C15—C181.482 (6)
C3—H30.9300C16—C171.374 (6)
C4—C51.375 (6)C16—H160.9300
C4—C71.488 (6)C17—H170.9300
C5—C61.372 (6)C18—F61.266 (6)
C5—H50.9300C18—F51.283 (6)
C6—H60.9300C18—F41.297 (6)
C7—F31.275 (6)C19—O41.213 (5)
C7—F21.303 (6)C19—N41.365 (5)
C7—F11.342 (7)C20—N51.314 (5)
C8—O11.205 (5)C20—N41.363 (5)
C8—N11.379 (5)C20—S21.724 (4)
C9—N21.314 (5)C21—C221.339 (6)
C9—N11.358 (5)C21—N61.425 (5)
C9—S11.723 (4)C21—S21.716 (4)
C10—C111.333 (6)C22—N51.358 (5)
C10—N21.359 (5)C22—H220.9300
C10—H100.9300N1—H10.8600
C11—N31.417 (5)N3—O31.220 (4)
C11—S11.719 (4)N3—O21.227 (5)
C12—C171.375 (6)N4—H40.8600
C12—C131.379 (6)N6—O51.224 (5)
C12—C191.491 (5)N6—O61.227 (5)
C2—C1—C6119.5 (4)C13—C14—H14119.7
C2—C1—C8122.8 (4)C14—C15—C16119.8 (4)
C6—C1—C8117.7 (4)C14—C15—C18121.3 (4)
C3—C2—C1120.0 (4)C16—C15—C18118.9 (4)
C3—C2—H2120.0C17—C16—C15120.0 (4)
C1—C2—H2120.0C17—C16—H16120.0
C2—C3—C4120.1 (4)C15—C16—H16120.0
C2—C3—H3120.0C16—C17—C12120.2 (4)
C4—C3—H3120.0C16—C17—H17119.9
C5—C4—C3120.2 (4)C12—C17—H17119.9
C5—C4—C7120.0 (4)F6—C18—F5106.1 (5)
C3—C4—C7119.8 (4)F6—C18—F4105.9 (5)
C6—C5—C4119.9 (4)F5—C18—F4102.8 (5)
C6—C5—H5120.0F6—C18—C15114.0 (4)
C4—C5—H5120.0F5—C18—C15112.9 (4)
C5—C6—C1120.2 (4)F4—C18—C15114.2 (4)
C5—C6—H6119.9O4—C19—N4121.1 (4)
C1—C6—H6119.9O4—C19—C12123.8 (4)
F3—C7—F2108.3 (5)N4—C19—C12115.2 (3)
F3—C7—F1106.3 (5)N5—C20—N4120.7 (3)
F2—C7—F1102.9 (5)N5—C20—S2116.8 (3)
F3—C7—C4114.0 (5)N4—C20—S2122.5 (3)
F2—C7—C4113.4 (4)C22—C21—N6126.4 (4)
F1—C7—C4111.2 (5)C22—C21—S2112.9 (3)
O1—C8—N1120.6 (4)N6—C21—S2120.6 (3)
O1—C8—C1123.9 (4)C21—C22—N5114.7 (4)
N1—C8—C1115.6 (3)C21—C22—H22122.7
N2—C9—N1120.6 (3)N5—C22—H22122.7
N2—C9—S1116.6 (3)C9—N1—C8122.4 (3)
N1—C9—S1122.8 (3)C9—N1—H1118.8
C11—C10—N2115.0 (4)C8—N1—H1118.8
C11—C10—H10122.5C9—N2—C10109.3 (3)
N2—C10—H10122.5O3—N3—O2124.0 (4)
C10—C11—N3126.8 (4)O3—N3—C11118.1 (4)
C10—C11—S1112.6 (3)O2—N3—C11117.9 (4)
N3—C11—S1120.6 (3)C19—N4—C20123.2 (3)
C17—C12—C13119.9 (4)C19—N4—H4118.4
C17—C12—C19118.6 (4)C20—N4—H4118.4
C13—C12—C19121.6 (4)C20—N5—C22109.4 (3)
C14—C13—C12119.6 (4)O5—N6—O6124.0 (4)
C14—C13—H13120.2O5—N6—C21117.8 (4)
C12—C13—H13120.2O6—N6—C21118.2 (4)
C15—C14—C13120.6 (4)C11—S1—C986.47 (19)
C15—C14—H14119.7C21—S2—C2086.26 (19)
C6—C1—C2—C30.6 (6)C16—C15—C18—F4166.3 (5)
C8—C1—C2—C3179.4 (4)C17—C12—C19—O450.0 (6)
C1—C2—C3—C40.6 (7)C13—C12—C19—O4129.2 (5)
C2—C3—C4—C50.7 (7)C17—C12—C19—N4129.0 (4)
C2—C3—C4—C7177.9 (4)C13—C12—C19—N451.8 (6)
C3—C4—C5—C60.4 (7)N6—C21—C22—N5177.4 (4)
C7—C4—C5—C6179.1 (5)S2—C21—C22—N50.2 (5)
C4—C5—C6—C11.7 (7)N2—C9—N1—C8175.9 (4)
C2—C1—C6—C51.8 (7)S1—C9—N1—C82.5 (6)
C8—C1—C6—C5179.4 (4)O1—C8—N1—C94.8 (6)
C5—C4—C7—F317.1 (8)C1—C8—N1—C9173.6 (4)
C3—C4—C7—F3164.2 (5)N1—C9—N2—C10177.1 (4)
C5—C4—C7—F2107.4 (6)S1—C9—N2—C101.3 (5)
C3—C4—C7—F271.3 (7)C11—C10—N2—C90.6 (6)
C5—C4—C7—F1137.3 (5)C10—C11—N3—O32.6 (7)
C3—C4—C7—F144.1 (7)S1—C11—N3—O3178.0 (3)
C2—C1—C8—O1149.3 (4)C10—C11—N3—O2177.3 (4)
C6—C1—C8—O129.5 (6)S1—C11—N3—O22.1 (5)
C2—C1—C8—N132.4 (6)O4—C19—N4—C202.8 (7)
C6—C1—C8—N1148.8 (4)C12—C19—N4—C20176.2 (4)
N2—C10—C11—N3179.1 (4)N5—C20—N4—C19170.2 (4)
N2—C10—C11—S10.3 (5)S2—C20—N4—C199.0 (6)
C17—C12—C13—C140.0 (7)N4—C20—N5—C22178.9 (4)
C19—C12—C13—C14179.2 (4)S2—C20—N5—C220.4 (5)
C12—C13—C14—C151.2 (7)C21—C22—N5—C200.3 (6)
C13—C14—C15—C160.8 (7)C22—C21—N6—O5172.6 (4)
C13—C14—C15—C18177.6 (4)S2—C21—N6—O510.3 (6)
C14—C15—C16—C170.8 (7)C22—C21—N6—O67.9 (7)
C18—C15—C16—C17179.2 (4)S2—C21—N6—O6169.2 (3)
C15—C16—C17—C122.0 (7)C10—C11—S1—C90.8 (4)
C13—C12—C17—C161.6 (7)N3—C11—S1—C9178.7 (4)
C19—C12—C17—C16179.2 (4)N2—C9—S1—C111.2 (3)
C14—C15—C18—F6137.1 (6)N1—C9—S1—C11177.2 (4)
C16—C15—C18—F644.5 (7)C22—C21—S2—C200.0 (4)
C14—C15—C18—F5101.7 (6)N6—C21—S2—C20177.4 (4)
C16—C15—C18—F576.7 (6)N5—C20—S2—C210.3 (4)
C14—C15—C18—F415.3 (7)N4—C20—S2—C21179.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N5i0.862.323.044 (5)142
N1—H1···O3i0.862.573.023 (5)115
N4—H4···N2ii0.862.182.939 (5)147
N4—H4···O20.862.623.146 (5)121
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H6F3N3O3S
Mr317.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.362 (4), 8.946 (3), 23.261 (8)
β (°) 100.762 (4)
V3)2527.2 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.34 × 0.32 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.903, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
11671, 4588, 3183
Rint0.039
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.175, 1.06
No. of reflections4588
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.48

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N5i0.862.323.044 (5)142
N1—H1···O3i0.862.573.023 (5)115
N4—H4···N2ii0.862.182.939 (5)147
N4—H4···O20.862.623.146 (5)121
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This study was supported by the earmarked fund for China Agriculture Research System (cars-38) and the program funded by the Basic Scientific Research Funds in Central Agricultural Scientific Research Institutions (1610322013005).

References

First citationBallard, T. E., Wang, X., Olekhnovich, I., Koerner, T., Seymour, C., Salamoun, J., Warthan, M., Hoffman, P. S. & Macdonald, T. L. (2011). ChemMedChem, 6, 362–377.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFox, L. M. & Saravolatz, L. D. (2005). Clin. Infect. Dis. 40, 1173–1180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGargala, G., Le Goff, L., Ballet, J. J., Favennec, L., Stachulski, A. V. & Rossignol, J. F. (2010). Antimicrob. Agents Chemother. 54, 1315–1318.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStachulski, A. V., Pidathala, C., Row, E. C., Sharma, R., Berry, N. G., Iqbal, M., Bentley, J., Allman, S. A., Edwards, G., Helm, A., Hellier, J., Korba, B. E., Semple, J. E. & Rossignol, J. F. (2011). J. Med. Chem. 54, 4119–4132.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds