[Journal logo]

Volume 69 
Part 7 
Pages m385-m386  
July 2013  

Received 26 May 2013
Accepted 5 June 2013
Online 15 June 2013

Key indicators
Single-crystal X-ray study
T = 213 K
Mean [sigma](C-C) = 0.003 Å
Disorder in main residue
R = 0.027
wR = 0.079
Data-to-parameter ratio = 15.1
Details
Open access

Bis(dicyanamido-[kappa]N)[tris(3-aminopropyl)amine-[kappa]4N]nickel(II)

aSchool of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
Correspondence e-mail: liubaoshu@126.com

In the title complex, [Ni(C2N3)2(C9H24N4)], the NiII atom is coordinated in a distorted octahedral geometry by one tris(3-aminopropyl)amine (trisapa) ligand and two dicyanamide (dca) ligands [one of them disordered in a 0.681 (19):0319 (19) ratio]. Intermolecular N-H...N hydrogen bonds involving the N atoms of the dca anions and the trisapa amine H atoms result in the formation of a three-dimensional network.

Related literature

For magnetic properties and structural types of dicyanamide complexes, see: Batten (2005[Batten, S. R. (2005). J. Solid State Chem. 178, 2475-2479.]); Batten & Murray (2003[Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.]); Batten et al. (1998[Batten, S. R., Jensen, P., Moubaraki, B., Murray, K. S. & Robson, R. (1998). J. Chem. Soc. Chem. Commun. pp. 439-440.]); Ghosh et al. (2011[Ghosh, T., Chattopadhyay, T., Das, S., Mondal, S., Suresh, E., Zangrando, E. & Das, D. (2011). Cryst. Growth Des. 11, 3198-3205.]); Ion et al. (2013[Ion, A. E., Nica, S., Madalan, A. M., Lloret, F., Julve, M. & Andruh, M. (2013). CrystEngComm, 15, 294-301.]); Manson et al. (1999[Manson, J. L., Kmety, C. R., Epstein, A. J. & Miller, J. S. (1999). Inorg. Chem. 38, 2552-2553.]); Mastropietro et al. (2013[Mastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270-281.]); Turner et al. (2011[Turner, D. R., Chesman, A. S. R., Murray, K. S., Deacon, G. B. & Batten, S. R. (2011). J. Chem. Soc. Chem. Commun. pp. 10189-10210.]). For dicyanamide complexes with multidentate Schiff bases, see: Sadhukhan et al. (2011[Sadhukhan, D., Ray, A., Butcher, R. J., Gómez Garclá, C. J., Dede, B. & Mitra, S. (2011). Inorg. Chim. Acta, 376, 245-254.]); Fondo et al. (2011[Fondo, M., Garclá-Deibe, A. M., Ocampo, N., Vicente, R., Sanmartln, J. & Sanudo, C. (2011). Inorg. Chim. Acta, 373, 73-78.]); Bhar et al. (2011[Bhar, K., Chattopadhyay, S., Khan, S., Kumar, R. K., Maji, T. K., Ribas, J. & Ghosh, B. K. (2011). Inorg. Chim. Acta, 370, 492-498.]). For dicyanamide complexes with polyamines as co-ligands, see: Khan et al. (2011[Khan, S., Bhar, K., Adarsh, N. N., Mitra, P., Ribas, J. & Ghosh, B. K. (2011). J. Mol. Struct. 1004, 138-145.]). For Ni-N bond lengths in aliphatic amine nickel complexes, see: Cho et al. (2002[Cho, J., Lee, U. & Kim, J. C. (2002). Transition Met. Chem. 27, 429-432.]); Brezina et al. (1999[Brezina, F., Travnlcek, Z., Sindelar, Z., Pastorek, R. & Marek, J. (1999). Transition Met. Chem. 24, 459-462.]) and in [Ni(tn)2{C2N3}](ClO4)(tn is trimethylenediamine, see: Li et al. (2002[Li, B. L., Ding, J. G., Lang, J. P., Xu, Z. & Chen, J. T. (2002). J. Mol. Struct. 616, 175-179.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2N3)2(C9H24N4)]

  • Mr = 379.13

  • Monoclinic, P 21 /c

  • a = 10.171 (1) Å

  • b = 11.3960 (11) Å

  • c = 15.5305 (15) Å

  • [beta] = 105.660 (2)°

  • V = 1733.3 (3) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 1.14 mm-1

  • T = 213 K

  • 0.17 × 0.09 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 0.945

  • 12722 measured reflections

  • 4056 independent reflections

  • 3403 reflections with I > 2[sigma](I)

  • Rint = 0.024

Refinement
  • R[F2 > 2[sigma](F2)] = 0.027

  • wR(F2) = 0.079

  • S = 1.07

  • 4056 reflections

  • 269 parameters

  • 20 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.38 e Å-3

  • [Delta][rho]min = -0.32 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N2-H2C...N10i 0.92 (2) 2.38 (2) 3.255 (2) 160 (2)
N2-H2D...N10ii 0.80 (2) 2.43 (2) 3.193 (2) 158 (2)
N3-H3D...N10i 0.90 (2) 2.36 (2) 3.154 (2) 148 (2)
N4-H4D...N7iii 0.90 (3) 2.19 (3) 3.094 (3) 176 (2)
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+2, -z; (iii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2508 ).


Acknowledgements

This project was supported by the National Natural Science Foundation of China. (NSFC 20571086).

References

Batten, S. R. (2005). J. Solid State Chem. 178, 2475-2479.  [Web of Science] [CrossRef] [ChemPort]
Batten, S. R., Jensen, P., Moubaraki, B., Murray, K. S. & Robson, R. (1998). J. Chem. Soc. Chem. Commun. pp. 439-440.
Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.  [Web of Science] [CrossRef] [ChemPort]
Bhar, K., Chattopadhyay, S., Khan, S., Kumar, R. K., Maji, T. K., Ribas, J. & Ghosh, B. K. (2011). Inorg. Chim. Acta, 370, 492-498.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Brezina, F., Travnlcek, Z., Sindelar, Z., Pastorek, R. & Marek, J. (1999). Transition Met. Chem. 24, 459-462.  [ChemPort]
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cho, J., Lee, U. & Kim, J. C. (2002). Transition Met. Chem. 27, 429-432.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Fondo, M., Garclá-Deibe, A. M., Ocampo, N., Vicente, R., Sanmartln, J. & Sanudo, C. (2011). Inorg. Chim. Acta, 373, 73-78.  [Web of Science] [CrossRef] [ChemPort]
Ghosh, T., Chattopadhyay, T., Das, S., Mondal, S., Suresh, E., Zangrando, E. & Das, D. (2011). Cryst. Growth Des. 11, 3198-3205.  [CrossRef] [ChemPort]
Ion, A. E., Nica, S., Madalan, A. M., Lloret, F., Julve, M. & Andruh, M. (2013). CrystEngComm, 15, 294-301.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Khan, S., Bhar, K., Adarsh, N. N., Mitra, P., Ribas, J. & Ghosh, B. K. (2011). J. Mol. Struct. 1004, 138-145.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Li, B. L., Ding, J. G., Lang, J. P., Xu, Z. & Chen, J. T. (2002). J. Mol. Struct. 616, 175-179.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Manson, J. L., Kmety, C. R., Epstein, A. J. & Miller, J. S. (1999). Inorg. Chem. 38, 2552-2553.  [Web of Science] [CrossRef] [ChemPort]
Mastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270-281.  [CSD] [CrossRef] [ChemPort]
Sadhukhan, D., Ray, A., Butcher, R. J., Gómez Garclá, C. J., Dede, B. & Mitra, S. (2011). Inorg. Chim. Acta, 376, 245-254.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Turner, D. R., Chesman, A. S. R., Murray, K. S., Deacon, G. B. & Batten, S. R. (2011). J. Chem. Soc. Chem. Commun. pp. 10189-10210.


Acta Cryst (2013). E69, m385-m386   [ doi:10.1107/S1600536813015651 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.