metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­aqua­(di­methyl­formamide)­cobalt(II) sulfate di­methyl­formamide monosolvate

aGiresun University, Department of Chemistry, Art and Sciences Faculty, Giresun, Turkey
*Correspondence e-mail: murat.tas@giresun.edu.tr

(Received 8 April 2013; accepted 9 May 2013; online 8 June 2013)

The title compound, [Co(C3H7NO)(H2O)5]SO4·C3H7NO, contains five aqua ligands, a CoII atom, a sulfate ion and both a coordinating and a non-coordinating di­methyl­formamide (DMF) mol­ecule. The DMF solvent mol­ecule lies between the complex units, which are located along the b axis. The sulfate ion is for charge balance. The CoII atom has distorted octa­hedral coordination geometry, being ligated by five aqua ligands and the O atom of the DMF ligand. O—H⋯O hydrogen bonds between the aqua ligands and the sulfate anion and non-coordinating DMF molecule lead to the formation of a three-dimensional network. Since all constituents lie on a mirror plane, the H atoms of all methyl groups and of one of the aqua ligands are equally disordered over two positions.

Related literature

For background to the use of DMF, see: Kolthoff et al. (1970[Kolthoff, I. M., Chantooni, M. K. & Smagowski, H. (1970). Anal. Chem. 42, 1622-1628.]); Pastoriza-Santos & Liz-Marzan (1999[Pastoriza-Santos, I. & Liz-Marzan, L. M. (1999). Langmuir, 15, 948-951.]); Kimmerle & Eben (1975[Kimmerle, G. & Eben, A. (1975). Int. Arch. Arbeitsmed. 34, 109-126.]); Gescher (1993[Gescher, A. (1993). Chem. Res. Toxicol., 6, 245-251.]); Zhou et al. (1996[Zhou, X., Krauser, J. A., Tate, D. R., VanBuren, A. S., Clark, J. A., Moody, P. R. & Liu, R. (1996). J. Phys. Chem. 100, 16822-16827.]); Matwiyoff (1966[Matwiyoff, N. C. (1966). Inorg. Chem. 5, 788-795.]). For amide complexes, see: Rao et al. (1984[Rao, C. P., Rao, M. & Rao, C. N. R. (1984). Inorg. Chem. 23, 2080-2085.]); Angus et al. (1993[Angus, P. M., Fairlie, D. P. & Jackson, W. G. (1993). Inorg. Chem. 32, 450-459.]); Khum & Maclntyre (1965[Khum, S. J. & Maclntyre, J. S. (1965). Can. J. Chem. 43 375-380.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C3H7NO)(H2O)5]SO4·C3H7NO

  • Mr = 391.26

  • Orthorhombic, P n m a

  • a = 22.256 (8) Å

  • b = 7.449 (7) Å

  • c = 9.929 (9) Å

  • V = 1646 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 298 K

  • 0.28 × 0.20 × 0.19 mm

Data collection
  • Agilent SuperNova diffractometer

  • Absorption correction: multi-scan (SCALE3 in ABSPACK; Agilent, 2011[Agilent (2011). CrysAlis PRO and ABSPACK. Aglient Technologies Ltd, Yarnton, England.]) Tmin = 0.956, Tmax = 1.000

  • 3903 measured reflections

  • 1627 independent reflections

  • 1407 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 1.14

  • 1627 reflections

  • 139 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.062 (4)
Co1—O2 2.101 (10)
Co1—O4 2.046 (4)
Co1—O3 2.110 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O6i 0.86 1.95 2.792 (4) 171
O1—H1B⋯O6ii 0.86 2.26 2.792 (4) 120
O3—H3A⋯O5iii 0.85 (2) 1.99 (2) 2.807 (8) 162 (4)
O3—H3B⋯O8iv 0.88 (2) 1.85 (2) 2.731 (17) 178 (4)
O2—H2A⋯O6v 0.88 (2) 1.79 (2) 2.660 (3) 171 (4)
O2—H2B⋯O7iv 0.89 (4) 1.86 (4) 2.745 (15) 177 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and ABSPACK. Aglient Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

N,N-Dimethylformamide (DMF) which is a simple model molecule for the peptide bond in proteins and readily absorbed into the human organism by inhalitaion or dermal contamination and is suspected of being a carcinogen, is an important compound used as a solvent in a variety of industrial processes including the preparation of synthetic fibers, leathers, films, and surface coatings, preparation of colloids (Kolthoff et al., 1970; Pastoriza-Santos & Liz-Marzan, 1999; Kimmerle & Eben, 1975; Gescher, 1993; Zhou et al., 1996). Also DMF shows similar solvent properties to those of water and methanol and shows promise as a nonaqueous medium for ionic reactions (Matwiyoff, 1966).

Due to the model properties for peptides, the amide complexes is of continuing interest. Crystallographic studies have shown that in complexes, the amides are bonded to the metal atom by using their carbonyl oxygen (Rao et al., 1984; Angus et al., 1993; Khum & Maclntyre, 1965).

The asymmetric unit of the titled compound contains two different DMF molecules. One of them is acted as ligand and bonds to the Co(II) ions via its oxygen atom and the other one is involved as solvate molecules in the crystal structure. The structure also has sulfate ion to charge balance.

The Co(II) atom has distorted octahedral geometry, being ligated by five aqua ligands and a DMF ligand (Table 1). The coordination bond lengths were found 2.046 (7) Å for Co—ODMF and in the rage of 2.062–2.110 Å for Co—Oaqua. The O—H···O intermolecular hydrogen bonds formed three dimensional molecular network, in solid state. The sulphate ions plays major role to form the three-dimensional structure via formation of the hydrogen bonds. The DMF solvate units were capsulated between the complex units which locate along the b-axis, by the hydrogen bond interactions (Table 2).

Related literature top

For background to the use of DMF, see: Kolthoff et al. (1970); Pastoriza-Santos & Liz-Marzan (1999); Kimmerle & Eben (1975); Gescher (1993); Zhou et al. (1996); Matwiyoff (1966). For amide complexes, see: Rao et al. (1984); Angus et al. (1993); Khum & Maclntyre (1965).

Experimental top

The CoSO4.6H2O and 5-hydantoin acetic acid was mixed in 50 ml DMF solvent. The pH of the solution was adjusted to 6.7 by 1% NaHCO3 solution. The mixture was heated to 50°C and stirred for 1 h and then slowly cooled to room temperature. The solution was kept for several weeks, so suitable crystals for X-ray analyses was obtained.

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Structure description top

N,N-Dimethylformamide (DMF) which is a simple model molecule for the peptide bond in proteins and readily absorbed into the human organism by inhalitaion or dermal contamination and is suspected of being a carcinogen, is an important compound used as a solvent in a variety of industrial processes including the preparation of synthetic fibers, leathers, films, and surface coatings, preparation of colloids (Kolthoff et al., 1970; Pastoriza-Santos & Liz-Marzan, 1999; Kimmerle & Eben, 1975; Gescher, 1993; Zhou et al., 1996). Also DMF shows similar solvent properties to those of water and methanol and shows promise as a nonaqueous medium for ionic reactions (Matwiyoff, 1966).

Due to the model properties for peptides, the amide complexes is of continuing interest. Crystallographic studies have shown that in complexes, the amides are bonded to the metal atom by using their carbonyl oxygen (Rao et al., 1984; Angus et al., 1993; Khum & Maclntyre, 1965).

The asymmetric unit of the titled compound contains two different DMF molecules. One of them is acted as ligand and bonds to the Co(II) ions via its oxygen atom and the other one is involved as solvate molecules in the crystal structure. The structure also has sulfate ion to charge balance.

The Co(II) atom has distorted octahedral geometry, being ligated by five aqua ligands and a DMF ligand (Table 1). The coordination bond lengths were found 2.046 (7) Å for Co—ODMF and in the rage of 2.062–2.110 Å for Co—Oaqua. The O—H···O intermolecular hydrogen bonds formed three dimensional molecular network, in solid state. The sulphate ions plays major role to form the three-dimensional structure via formation of the hydrogen bonds. The DMF solvate units were capsulated between the complex units which locate along the b-axis, by the hydrogen bond interactions (Table 2).

For background to the use of DMF, see: Kolthoff et al. (1970); Pastoriza-Santos & Liz-Marzan (1999); Kimmerle & Eben (1975); Gescher (1993); Zhou et al. (1996); Matwiyoff (1966). For amide complexes, see: Rao et al. (1984); Angus et al. (1993); Khum & Maclntyre (1965).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title complex, showing the atom labelling. i: x, 1/2-y, z
[Figure 2] Fig. 2. A view of the packing diagram of the titled compound.
Pentaaqua(dimethylformamide)cobalt(II) sulfate dimethylformamide monosolvate top
Crystal data top
[Co(C3H7NO)(H2O)5]SO4·C3H7NODx = 1.578 Mg m3
Mr = 391.26Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, PnmaCell parameters from 108 reflections
a = 22.256 (8) Åθ = 4.4–25.9°
b = 7.449 (7) ŵ = 1.22 mm1
c = 9.929 (9) ÅT = 298 K
V = 1646 (2) Å3Block, clear red
Z = 40.28 × 0.20 × 0.19 mm
F(000) = 820
Data collection top
Agilent SuperNova (Single source at offset, Eos)
diffractometer
1627 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1407 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 16.0454 pixels mm-1θmax = 25.6°, θmin = 3.3°
ω scansh = 2724
Absorption correction: multi-scan
(SCALE3 in ABSPACK; Agilent, 2011)
k = 58
Tmin = 0.956, Tmax = 1.000l = 117
3903 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0358P)2 + 1.4684P]
where P = (Fo2 + 2Fc2)/3
1627 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.65 e Å3
3 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Co(C3H7NO)(H2O)5]SO4·C3H7NOV = 1646 (2) Å3
Mr = 391.26Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 22.256 (8) ŵ = 1.22 mm1
b = 7.449 (7) ÅT = 298 K
c = 9.929 (9) Å0.28 × 0.20 × 0.19 mm
Data collection top
Agilent SuperNova (Single source at offset, Eos)
diffractometer
1627 independent reflections
Absorption correction: multi-scan
(SCALE3 in ABSPACK; Agilent, 2011)
1407 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 1.000Rint = 0.021
3903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.65 e Å3
1627 reflectionsΔρmin = 0.38 e Å3
139 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.14060 (2)0.25000.38601 (6)0.0369 (2)
O10.18765 (17)0.25000.2071 (4)0.0595 (10)
H1A0.19180.35760.17870.089*0.50
H1B0.16840.18890.14840.089*0.50
O20.19603 (11)0.0408 (3)0.4542 (3)0.0480 (6)
O40.09678 (16)0.25000.5671 (4)0.0554 (9)
O30.08065 (10)0.0530 (3)0.3135 (3)0.0491 (6)
N10.09188 (18)0.25000.7912 (4)0.0507 (11)
C10.1212 (3)0.25000.6752 (6)0.0581 (14)
H10.16300.25000.67740.070*
C30.1242 (3)0.25000.9139 (6)0.090 (2)
H3C0.12230.13290.95380.135*0.50
H3D0.10690.33630.97430.135*0.50
H3E0.16540.28090.89680.135*0.50
C20.0295 (2)0.25000.7952 (6)0.0671 (16)
H2C0.01540.13160.81640.101*0.50
H2D0.01400.28590.70910.101*0.50
H2E0.01600.33250.86300.101*0.50
S10.31484 (5)0.25000.66245 (12)0.0364 (3)
O80.37947 (14)0.25000.6875 (4)0.0512 (9)
O70.28365 (16)0.25000.7907 (4)0.0557 (9)
N20.40622 (18)0.25000.2342 (4)0.0489 (10)
O50.49626 (15)0.25000.3358 (4)0.0607 (10)
C60.4297 (3)0.25000.0993 (5)0.0689 (17)
H6A0.40290.18510.04130.103*0.50
H6B0.46850.19360.09870.103*0.50
H6C0.43340.37130.06800.103*0.50
C40.4415 (2)0.25000.3370 (6)0.0546 (13)
H40.42320.25000.42120.066*
C50.3412 (2)0.25000.2504 (7)0.0722 (18)
H5A0.33130.22720.34300.108*0.50
H5B0.32390.15810.19480.108*0.50
H5C0.32540.36470.22430.108*0.50
O60.29865 (11)0.4135 (3)0.5871 (2)0.0539 (7)
H3A0.0516 (12)0.090 (5)0.266 (3)0.067 (13)*
H3B0.0944 (16)0.044 (4)0.274 (4)0.067 (13)*
H2A0.2308 (11)0.065 (6)0.492 (4)0.082 (15)*
H2B0.2032 (17)0.055 (6)0.404 (4)0.071 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0354 (3)0.0320 (4)0.0434 (4)0.0000.0010 (3)0.000
O10.086 (3)0.041 (2)0.052 (2)0.0000.0169 (19)0.000
O20.0492 (14)0.0394 (14)0.0553 (15)0.0061 (12)0.0120 (12)0.0035 (13)
O40.063 (2)0.059 (2)0.044 (2)0.0000.0044 (17)0.000
O30.0401 (13)0.0398 (14)0.0672 (17)0.0011 (11)0.0094 (12)0.0070 (13)
N10.051 (2)0.057 (3)0.044 (2)0.0000.0028 (19)0.000
C10.054 (3)0.052 (3)0.068 (4)0.0000.011 (3)0.000
C30.076 (4)0.134 (7)0.060 (4)0.0000.007 (3)0.000
C20.060 (3)0.073 (4)0.068 (4)0.0000.003 (3)0.000
S10.0398 (6)0.0284 (6)0.0410 (6)0.0000.0073 (5)0.000
O80.0391 (17)0.046 (2)0.069 (2)0.0000.0041 (16)0.000
O70.066 (2)0.041 (2)0.060 (2)0.0000.0174 (18)0.000
N20.048 (2)0.053 (3)0.046 (2)0.0000.0012 (19)0.000
O50.045 (2)0.077 (3)0.061 (2)0.0000.0062 (17)0.000
C60.077 (4)0.084 (4)0.045 (3)0.0000.006 (3)0.000
C40.051 (3)0.061 (4)0.052 (3)0.0000.010 (2)0.000
C50.047 (3)0.091 (5)0.078 (4)0.0000.003 (3)0.000
O60.0689 (15)0.0350 (13)0.0578 (15)0.0014 (12)0.0243 (12)0.0065 (12)
Geometric parameters (Å, º) top
Co1—O12.062 (4)C3—H3E0.9600
Co1—O2i2.101 (10)C2—H2C0.9600
Co1—O22.101 (10)C2—H2D0.9600
Co1—O42.046 (4)C2—H2E0.9600
Co1—O32.110 (9)S1—O81.460 (3)
Co1—O3i2.110 (9)S1—O71.450 (4)
O1—H1A0.8552S1—O61.474 (3)
O1—H1B0.8552S1—O6i1.474 (3)
O2—H2A0.878 (19)N2—C61.437 (6)
O2—H2B0.89 (4)N2—C41.288 (7)
O4—C11.203 (7)N2—C51.457 (6)
O3—H3A0.850 (18)O5—C41.219 (6)
O3—H3B0.879 (19)C6—H6A0.9600
N1—C11.324 (7)C6—H6B0.9600
N1—C31.414 (7)C6—H6C0.9600
N1—C21.389 (6)C4—H40.9300
C1—H10.9300C5—H5A0.9600
C3—H3C0.9600C5—H5B0.9600
C3—H3D0.9600C5—H5C0.9600
O1—Co1—O288.81 (11)O4—C1—N1123.6 (5)
O1—Co1—O2i88.81 (11)O4—C1—H1118.2
O1—Co1—O3i91.57 (12)N1—C1—H1118.2
O1—Co1—O391.57 (12)N1—C3—H3C109.5
O2—Co1—O2i95.9 (5)N1—C3—H3D109.5
O2i—Co1—O3176.13 (10)N1—C3—H3E109.5
O2i—Co1—O3i88.0 (5)N1—C2—H2C109.5
O2—Co1—O388.0 (5)N1—C2—H2D109.5
O2—Co1—O3i176.13 (10)N1—C2—H2E109.5
O4—Co1—O1177.94 (15)O8—S1—O6109.10 (17)
O4—Co1—O289.81 (11)O8—S1—O6i109.10 (17)
O4—Co1—O2i89.81 (11)O7—S1—O8108.8 (2)
O4—Co1—O389.90 (11)O7—S1—O6109.19 (18)
O4—Co1—O3i89.91 (11)O7—S1—O6i109.19 (18)
O3i—Co1—O388.2 (5)O6i—S1—O6111.4 (5)
Co1—O1—H1A109.8C6—N2—C5117.7 (5)
Co1—O1—H1B109.5C4—N2—C6121.1 (5)
H1A—O1—H1B109.1C4—N2—C5121.2 (5)
Co1—O2—H2A120 (3)N2—C6—H6A109.5
Co1—O2—H2B122 (3)N2—C6—H6B109.5
H2A—O2—H2B104 (4)N2—C6—H6C109.5
C1—O4—Co1124.7 (4)N2—C4—H4116.5
Co1—O3—H3A116 (3)O5—C4—N2127.0 (5)
Co1—O3—H3B120 (2)O5—C4—H4116.5
H3A—O3—H3B106 (4)N2—C5—H5A109.5
C1—N1—C3119.9 (5)N2—C5—H5B109.5
C1—N1—C2121.2 (5)N2—C5—H5C109.5
C2—N1—C3119.0 (5)
Co1—O4—C1—N1180.0C3—N1—C1—O4180.0
O2i—Co1—O4—C147.92 (7)C2—N1—C1—O40.000 (1)
O2—Co1—O4—C147.92 (7)C6—N2—C4—O50.0
O3—Co1—O4—C1135.93 (6)C5—N2—C4—O5180.0
O3i—Co1—O4—C1135.93 (6)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O6ii0.861.952.792 (4)171
O1—H1B···O6iii0.862.262.792 (4)120
C2—H2D···O40.962.342.715 (7)103
O3—H3A···O5iv0.85 (2)1.99 (2)2.807 (8)162 (4)
O3—H3B···O8v0.88 (2)1.85 (2)2.731 (17)178 (4)
O2—H2A···O6i0.88 (2)1.79 (2)2.660 (3)171 (4)
O2—H2B···O7v0.89 (4)1.86 (4)2.745 (15)177 (4)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y1/2, z1/2; (iv) x1/2, y+1/2, z+1/2; (v) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C3H7NO)(H2O)5]SO4·C3H7NO
Mr391.26
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)22.256 (8), 7.449 (7), 9.929 (9)
V3)1646 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.28 × 0.20 × 0.19
Data collection
DiffractometerAgilent SuperNova (Single source at offset, Eos)
Absorption correctionMulti-scan
(SCALE3 in ABSPACK; Agilent, 2011)
Tmin, Tmax0.956, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3903, 1627, 1407
Rint0.021
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.14
No. of reflections1627
No. of parameters139
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.38

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Selected bond lengths (Å) top
Co1—O12.062 (4)Co1—O42.046 (4)
Co1—O22.101 (10)Co1—O32.110 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O6i0.861.952.792 (4)171.4
O1—H1B···O6ii0.862.262.792 (4)120.3
O3—H3A···O5iii0.850 (18)1.99 (2)2.807 (8)162 (4)
O3—H3B···O8iv0.879 (19)1.85 (2)2.731 (17)178 (4)
O2—H2A···O6v0.878 (19)1.79 (2)2.660 (3)171 (4)
O2—H2B···O7iv0.89 (4)1.86 (4)2.745 (15)177 (4)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y1/2, z1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y, z1/2; (v) x, y+1/2, z.
 

References

First citationAgilent (2011). CrysAlis PRO and ABSPACK. Aglient Technologies Ltd, Yarnton, England.  Google Scholar
First citationAngus, P. M., Fairlie, D. P. & Jackson, W. G. (1993). Inorg. Chem. 32, 450–459.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGescher, A. (1993). Chem. Res. Toxicol., 6, 245–251.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKhum, S. J. & Maclntyre, J. S. (1965). Can. J. Chem. 43 375–380.  Google Scholar
First citationKimmerle, G. & Eben, A. (1975). Int. Arch. Arbeitsmed. 34, 109–126.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKolthoff, I. M., Chantooni, M. K. & Smagowski, H. (1970). Anal. Chem. 42, 1622–1628.  CrossRef CAS Web of Science Google Scholar
First citationMatwiyoff, N. C. (1966). Inorg. Chem. 5, 788–795.  CrossRef CAS Web of Science Google Scholar
First citationPastoriza-Santos, I. & Liz-Marzan, L. M. (1999). Langmuir, 15, 948–951.  CAS Google Scholar
First citationRao, C. P., Rao, M. & Rao, C. N. R. (1984). Inorg. Chem. 23, 2080–2085.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, X., Krauser, J. A., Tate, D. R., VanBuren, A. S., Clark, J. A., Moody, P. R. & Liu, R. (1996). J. Phys. Chem. 100, 16822–16827.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds