

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-[(*E*)-2-(4-Chlorophenyl)ethenyl]-5,5-dimethylcyclohex-2-en-1-one

Zeenat Fatima,^a Govindaraj Senthilkumar,^b A. Vadivel,^b Haridoss Manikandan^b and Devadasan Velmurugan^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, Tamilnadu, India Correspondence e-mail: shirai2011@gmail.com

Received 1 June 2013; accepted 11 June 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.130; data-to-parameter ratio = 21.5.

In the title compound, $C_{16}H_{17}ClO$, the cyclohexene ring adopts a half-chair conformation and the best plane through the six ring atoms makes a dihedral angle of 6.69 (7)° with the chlorophenyl ring. In the crystal, pairs of $C-H\cdots O$ hydrogen bonds link the molecules into centrosymmetric $R_2^2(20)$ dimers. The dimers are linked into an infinite chains along the *b*-axis direction by further $C-H\cdots O$ hydrogen bonds.

Related literature

For the pharmacological activity of cyclohexanone derivatives, see: Puetz *et al.*(2003); Rajveer *et al.* (2010). For a related structure, see: Hema *et al.* (2006). For conformational analysis, see: Allinger (1977); Cremer & Pople (1975).

Crystal data $C_{16}H_{17}CIO$ $M_r = 260.75$ Monoclinic, $P2_1/n$

$\beta = 105.726 \ (2)^{\circ}$
V = 1410.54 (8) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEXII areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\rm min} = 0.927, T_{\rm max} = 0.951$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 165 parameters $wR(F^2) = 0.130$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.21$ e Å $^{-3}$ 3552 reflections $\Delta \rho_{min} = -0.33$ e Å $^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2 - H2 \cdots O1^{i}$ C14 - H14 B \cdots O1^{ii}	0.93 0.97	2.41 2.57	3.301 (2) 3.4299 (18)	159 148

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and ZF thanks the UGC for a meritorious fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6912).

References

- Allinger, N. L. (1977). J. Am. Chem. Soc. 99, 8127-8134.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hema, R., Parthasarathi, V., Ravikumar, K., Pandiarajan, K. & Murugavel, K. (2006). Acta Cryst. E62, o703–o705.
- Puetz, C., Buschmann, H. & Koegel, B. (2003). US Patent Appl. No. 20030096811.
- Rajveer, Ch., Stephenrathinaraj, B., Sudharshini, S., Kumaraswamy, D., Shreshtha, B. & Choudhury, P. K. (2010). *Res. J. Pharm. Biol. Chem. Sci.* 1, 99–107.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

 $0.30 \times 0.25 \times 0.20$ mm

13158 measured reflections

3552 independent reflections

2611 reflections with $I > 2\sigma(I)$

 $\mu = 0.26 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.022$

supporting information

Acta Cryst. (2013). E69, o1121 [https://doi.org/10.1107/S1600536813016255]

3-[(E)-2-(4-Chlorophenyl)ethenyl]-5,5-dimethylcyclohex-2-en-1-one

Zeenat Fatima, Govindaraj Senthilkumar, A. Vadivel, Haridoss Manikandan and Devadasan Velmurugan

S1. Comment

Cyclohexanone derivatives have potent pharmacological activity in the treatment of a broad spectrum of medical conditions (Puetz *et al.*, 2003). The cyclohexanone moiety constitutes an important structural feature in several antiinflammatory, analgesic, local anesthetic and antihistaminic drugs (Rajveer *et al.*, 2010). In view of different applications of this class of compounds, we have undertaken a single-crystal structure determination of the title compound.

Molecules of the title compound, $C_{16}H_{17}ClO$, (Fig.1) are linked by pairs of intermolecular (C2—H2···O1) hydrogen bonds (Fig. 2) into centrosymmetric $R_2^2(20)$ dimers and these dimers are linked into an infinite chains by pairs of (C14— H14B···O1) hydrogen bonds, which propagate in the *b* axis direction. The cyclohexene ring (C9—C14) adopts a *halfchair* conformation and makes a dihedral angle of 6.69 (7)° with the phenyl ring (C1—C6).

S2. Experimental

A mixture of isophorone (0.01 mol), 4-chlorobezaldehyde (0.01 mol) and sodium hydroxide solution (10 mL, 10%) in ethanol (25 mL) was stirred at room temperature until the starting material disappeared. The resulting mixture was poured into crushed ice and the precipitate was filtered off, dried and recrystallized from ethanol. Yield=90%, Melting point=84–86°C.

S3. Refinement

The hydrogen atoms were placed in calculated positions with C—H = 0.92 Å to 0.97 Å refined in the riding model with fixed isotropic displacement parameters: $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl group and $U_{iso}(H) = 1.2U_{eq}(C)$ for other groups.

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

The crystal packing of the title compound viewed down *a* axis. H-atoms not involved in H-bonds have been excluded for clarity.

3-[(E)-2-(4-Chlorophenyl)ethenyl]-5,5-dimethylcyclohex-2-en-1-one

Crystal data	
$C_{16}H_{17}ClO$	Monoclinic, $P2_1/n$
$M_r = 260.75$	a = 13.7630 (4) Å

Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 1.7 - 28.5^{\circ}$

 $\mu = 0.26 \text{ mm}^{-1}$

Block, colourless

 $0.30 \times 0.25 \times 0.20 \text{ mm}$

T = 293 K

Cell parameters from 3552 reflections

b = 6.0841 (2) Å c = 17.5003 (6) Å $\beta = 105.726 (2)^{\circ}$ $V = 1410.54 (8) \text{ Å}^{3}$ Z = 4 F(000) = 552 $D_{x} = 1.228 \text{ Mg m}^{-3}$

Data collection

sured reflections
endent reflections
tions with $I > 2\sigma(I)$
$\theta_{\rm min} = 1.7^{\circ}$
8
3

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.044$ Hydrogen site location: inferred from $wR(F^2) = 0.130$ neighbouring sites S = 1.03H-atom parameters constrained 3552 reflections $w = 1/[\sigma^2(F_0^2) + (0.0613P)^2 + 0.2499P]$ 165 parameters where $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.25679 (10)	-0.3118 (3)	0.46901 (9)	0.0552 (4)	
C2	0.30278 (13)	-0.1202 (3)	0.50163 (9)	0.0631 (4)	
H2	0.3008	-0.0766	0.5521	0.076*	
C3	0.35172 (13)	0.0062 (3)	0.45851 (9)	0.0600 (4)	
H3	0.3831	0.1356	0.4807	0.072*	
C4	0.35569 (10)	-0.0537 (2)	0.38278 (8)	0.0490 (3)	
C5	0.30813 (11)	-0.2484 (3)	0.35197 (9)	0.0572 (4)	
Н5	0.3095	-0.2927	0.3014	0.069*	
C6	0.25905 (12)	-0.3775 (3)	0.39444 (9)	0.0592 (4)	
H6	0.2278	-0.5076	0.3729	0.071*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C7	0.40805 (11)	0.0754 (2)	0.33556 (8)	0.0518 (3)
H7	0.4065	0.0202	0.2857	0.062*
C8	0.45744 (11)	0.2628 (2)	0.35633 (8)	0.0531 (3)
H8	0.4574	0.3211	0.4055	0.064*
C9	0.51163 (10)	0.3859 (2)	0.30951 (8)	0.0471 (3)
C10	0.56090 (11)	0.5706 (2)	0.33930 (8)	0.0529 (3)
H10	0.5568	0.6189	0.3887	0.063*
C11	0.62046 (10)	0.6992 (2)	0.29819 (8)	0.0505 (3)
C12	0.63343 (11)	0.6046 (3)	0.22279 (9)	0.0575 (4)
H12A	0.6915	0.5076	0.2353	0.069*
H12B	0.6472	0.7230	0.1901	0.069*
C13	0.54145 (11)	0.4765 (2)	0.17534 (8)	0.0508 (3)
C14	0.51482 (11)	0.3025 (2)	0.22953 (8)	0.0527 (3)
H14A	0.4494	0.2406	0.2030	0.063*
H14B	0.5640	0.1847	0.2371	0.063*
C15	0.56696 (15)	0.3622 (3)	0.10559 (10)	0.0780 (5)
H15A	0.5103	0.2760	0.0771	0.117*
H15B	0.6244	0.2682	0.1251	0.117*
H15C	0.5823	0.4707	0.0707	0.117*
C16	0.45296 (13)	0.6332 (3)	0.14473 (10)	0.0704 (5)
H16A	0.4715	0.7444	0.1124	0.106*
H16B	0.4358	0.7012	0.1889	0.106*
H16C	0.3958	0.5527	0.1137	0.106*
O1	0.65928 (9)	0.87306 (19)	0.32485 (7)	0.0688 (3)
Cl1	0.19413 (4)	-0.47224 (9)	0.52256 (3)	0.08168 (19)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0494 (7)	0.0594 (9)	0.0550 (8)	-0.0006 (7)	0.0112 (6)	0.0115 (7)
C2	0.0715 (10)	0.0726 (11)	0.0450 (8)	-0.0080 (8)	0.0157 (7)	-0.0013 (7)
C3	0.0696 (9)	0.0585 (9)	0.0504 (8)	-0.0135 (7)	0.0139 (7)	-0.0063 (7)
C4	0.0477 (7)	0.0489 (8)	0.0500 (7)	0.0014 (6)	0.0124 (6)	0.0008 (6)
C5	0.0621 (8)	0.0566 (9)	0.0551 (8)	-0.0045 (7)	0.0192 (7)	-0.0078 (7)
C6	0.0598 (8)	0.0542 (9)	0.0627 (9)	-0.0087 (7)	0.0150 (7)	-0.0033 (7)
C7	0.0558 (8)	0.0525 (8)	0.0481 (7)	0.0004 (6)	0.0155 (6)	-0.0010 (6)
C8	0.0572 (8)	0.0558 (8)	0.0468 (7)	-0.0018 (7)	0.0150 (6)	-0.0011 (6)
C9	0.0470 (7)	0.0471 (7)	0.0458 (7)	0.0024 (6)	0.0100 (5)	0.0007 (6)
C10	0.0564 (8)	0.0568 (8)	0.0448 (7)	-0.0035 (7)	0.0126 (6)	-0.0069 (6)
C11	0.0441 (6)	0.0506 (8)	0.0526 (8)	-0.0005 (6)	0.0059 (6)	-0.0008 (6)
C12	0.0507 (8)	0.0647 (9)	0.0602 (9)	-0.0044 (7)	0.0206 (6)	-0.0052 (7)
C13	0.0545 (7)	0.0525 (8)	0.0464 (7)	0.0003 (6)	0.0155 (6)	-0.0027 (6)
C14	0.0625 (8)	0.0456 (7)	0.0499 (8)	-0.0012 (6)	0.0153 (6)	-0.0048 (6)
C15	0.0945 (13)	0.0874 (13)	0.0605 (10)	-0.0114 (10)	0.0356 (9)	-0.0178 (9)
C16	0.0686 (10)	0.0708 (11)	0.0614 (9)	0.0072 (9)	0.0000 (8)	0.0082 (8)
01	0.0740 (7)	0.0596 (7)	0.0712 (7)	-0.0183 (6)	0.0170 (6)	-0.0110 (5)
Cl1	0.0819 (3)	0.0909 (4)	0.0745 (3)	-0.0193 (2)	0.0250 (2)	0.0201 (2)

Geometric parameters (Å, °)

C1—C6	1.373 (2)	C10—C11	1.457 (2)
C1—C2	1.375 (2)	C10—H10	0.9300
C1—C11	1.7356 (15)	C11—O1	1.2192 (17)
C2—C3	1.375 (2)	C11—C12	1.494 (2)
C2—H2	0.9300	C12—C13	1.526 (2)
C3—C4	1.390 (2)	C12—H12A	0.9700
С3—Н3	0.9300	C12—H12B	0.9700
C4—C5	1.390 (2)	C13—C16	1.525 (2)
C4—C7	1.463 (2)	C13—C15	1.526 (2)
C5—C6	1.378 (2)	C13—C14	1.531 (2)
С5—Н5	0.9300	C14—H14A	0.9700
С6—Н6	0.9300	C14—H14B	0.9700
C7—C8	1.327 (2)	C15—H15A	0.9600
С7—Н7	0.9300	C15—H15B	0.9600
C8—C9	1.4560 (19)	C15—H15C	0.9600
С8—Н8	0.9300	C16—H16A	0.9600
C9—C10	1.342 (2)	C16—H16B	0.9600
C9—C14	1.5006 (19)	C16—H16C	0.9600
C6—C1—C2	121.00 (14)	C10—C11—C12	116.55 (12)
C6—C1—Cl1	119.47 (12)	C11—C12—C13	113.41 (12)
C2—C1—C11	119.53 (12)	C11—C12—H12A	108.9
C3—C2—C1	119.04 (14)	C13—C12—H12A	108.9
С3—С2—Н2	120.5	C11—C12—H12B	108.9
C1—C2—H2	120.5	C13—C12—H12B	108.9
C2—C3—C4	121.89 (14)	H12A—C12—H12B	107.7
С2—С3—Н3	119.1	C16—C13—C15	109.80 (14)
С4—С3—Н3	119.1	C16—C13—C12	109.72 (13)
C3—C4—C5	117.22 (13)	C15—C13—C12	109.33 (13)
C3—C4—C7	123.38 (13)	C16—C13—C14	110.34 (13)
C5—C4—C7	119.39 (13)	C15-C13-C14	109.04 (13)
C6—C5—C4	121.67 (14)	C12-C13-C14	108.58 (12)
С6—С5—Н5	119.2	C9—C14—C13	114.60 (12)
С4—С5—Н5	119.2	C9—C14—H14A	108.6
C1—C6—C5	119.18 (14)	C13—C14—H14A	108.6
С1—С6—Н6	120.4	C9—C14—H14B	108.6
С5—С6—Н6	120.4	C13—C14—H14B	108.6
C8—C7—C4	126.92 (14)	H14A—C14—H14B	107.6
С8—С7—Н7	116.5	C13—C15—H15A	109.5
С4—С7—Н7	116.5	C13—C15—H15B	109.5
С7—С8—С9	126.19 (14)	H15A—C15—H15B	109.5
С7—С8—Н8	116.9	C13—C15—H15C	109.5
С9—С8—Н8	116.9	H15A—C15—H15C	109.5
C10—C9—C8	119.59 (13)	H15B—C15—H15C	109.5
C10—C9—C14	120.39 (13)	C13—C16—H16A	109.5
C8—C9—C14	119.99 (12)	C13—C16—H16B	109.5

C9—C10—C11 C9—C10—H10 C11—C10—H10 O1—C11—C10 O1—C11—C12	123.40 (13) 118.3 118.3 121.60 (14) 121.83 (14)	H16A—C16—H16B C13—C16—H16C H16A—C16—H16C H16B—C16—H16C	109.5 109.5 109.5 109.5
C6—C1—C2—C3	-0.1 (2)	C8—C9—C10—C11	177.38 (13)
Cl1-Cl-C2-C3	-179.65 (12)	C14—C9—C10—C11	-0.7 (2)
C1—C2—C3—C4	0.3 (3)	C9—C10—C11—O1	175.58 (14)
C2—C3—C4—C5	-0.2 (2)	C9—C10—C11—C12	-5.8 (2)
C2—C3—C4—C7	-179.28 (14)	O1—C11—C12—C13	-147.07 (14)
C3—C4—C5—C6	-0.1 (2)	C10-C11-C12-C13	34.32 (19)
C7—C4—C5—C6	179.07 (13)	C11—C12—C13—C16	66.81 (17)
C2-C1-C6-C5	-0.1 (2)	C11—C12—C13—C15	-172.71 (14)
Cl1—C1—C6—C5	179.41 (11)	C11—C12—C13—C14	-53.85 (17)
C4—C5—C6—C1	0.2 (2)	C10-C9-C14-C13	-21.6 (2)
C3—C4—C7—C8	-0.4 (2)	C8—C9—C14—C13	160.34 (12)
C5—C4—C7—C8	-179.51 (14)	C16—C13—C14—C9	-72.87 (16)
C4—C7—C8—C9	178.10 (13)	C15—C13—C14—C9	166.46 (13)
C7—C8—C9—C10	-178.00 (15)	C12—C13—C14—C9	47.41 (16)
C7—C8—C9—C14	0.1 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2…O1 ⁱ	0.93	2.41	3.301 (2)	159
C14—H14 <i>B</i> ···O1 ⁱⁱ	0.97	2.57	3.4299 (18)	148

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z.