

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Methoxy-4-(prop-2-en-1-yl)phenyl 2,4dichlorobenzoate

Mallikarjuna Rao Pichika,^a* Yew Beng Kang^a and Seik Weng Ng^{b,c}

^aDepartment of Pharmaceutical Chemistry, International Medical University, 126 Jalan Bukit Jalil, 57000 Kuala Lumpur, Malaysia, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: mallikarjunarao_pichika@imu.edu.my

Received 3 June 2013; accepted 5 June 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.008 Å; R factor = 0.082; wR factor = 0.269; data-to-parameter ratio = 13.6.

In the title compound, C₁₇H₁₄Cl₂O₃, the two benzene rings are twisted by $73.6 (2)^{\circ}$. The twist is similar to that found in the unsubstituted compound, viz. phenyl benzoate. In the crystal, inversion dimers are linked by pairs of C-H. \cdot \cdot O interactions.

Related literature

For the structure of phenyl benzoate, see: Shibakami & Sekiya (1995).

Experimental

Crvstal data C17H14Cl2O3 $M_r = 337.18$

Triclinic, P1 a = 7.8805 (8) Å

organic compounds

b = 8.4673 (12) Å	Z = 2
c = 12.3973 (14) Å	Mo $K\alpha$ radiation
$\alpha = 104.166 \ (11)^{\circ}$	$\mu = 0.43 \text{ mm}^{-1}$
$\beta = 94.502 \ (9)^{\circ}$	$T = 100 { m K}$
$\gamma = 104.145 \ (10)^{\circ}$	$0.40 \times 0.20 \times 0.20$ mm
$V = 769.29 (16) \text{ Å}^3$	

Data collection

Agilent SuperNova Dual	4945 measured reflections
diffractometer with an Atlas	2703 independent reflections
detector	1818 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.057$
(CrysAlis PRO; Agilent, 2013)	
$T_{\rm min} = 0.847, T_{\rm max} = 0.919$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.082$	199 parameters
$wR(F^2) = 0.269$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 1.02 \text{ e } \text{\AA}^{-3}$
2703 reflections	$\Delta \rho_{\rm min} = -0.64 \ {\rm e} \ {\rm \AA}^{-3}$

10.15

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdots A$ $D - H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $C2-H2 \cdot \cdot \cdot O3^i$ 0.95 2.52 3.339 (7) 144

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the Ministry of Higher Education, Malaysia (ERGS/1/2012/STG01/IMU/02/1; UM-C/HIR-MOHE/SC/03) for supporting this study and the International Medical University for providing the facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6913).

References

Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122

Shibakami, M. & Sekiya, A. (1995). Acta Cryst. C51, 326-330.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, o1089 [https://doi.org/10.1107/S1600536813015675]

2-Methoxy-4-(prop-2-en-1-yl)phenyl 2,4-dichlorobenzoate

Mallikarjuna Rao Pichika, Yew Beng Kang and Seik Weng Ng

S1. Comment

The title phenyl benzoate (Scheme I, Fig. 1), which possesses an allyl and a methoxy substituent, was synthesized for an evaluation of its pharmaceutical properties as it is an ester derivative of eugenol. The two benzene rings are approximately perpendicular [dihedral angle 73.6 (25) °]. The twist is similar to that found in the unsubstituted compound, phenyl benzoate (Shibakami & Sekiya, 1995).

S2. Experimental

4-Allyl-2-methoxyphenol (1 mmol), 2,4-dichlorobenzoic acid (1 mmol), diethylazodicarboxylate (2 mmol) and triphenylphosphine (2 mmol) were heated in THF (10 ml) for 2 h. The solid material extracted with dichloromethane. The dichloromethane solution was eluted through a silica gel column by using an *n*-hexane–ethyl acetate (95: 5 v/v) solvent system. Slow evaporation of the solution yielded large colorless crystals.

S3. Refinement

H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, U_{iso} (H) 1.2 to 1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation.

The final difference Fourier map had a peak at 1 Å from Cl1.

Figure 1

Anisotropic displacement ellipsoid plot (Barbour, 2001) of $C_{17}H_{14}Cl_2O_3$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

2-Methoxy-4-(prop-2-en-1-yl)phenyl 2,4-dichlorobenzoate

Crystal data	
$C_{17}H_{14}Cl_2O_3$	
$M_r = 337.18$	

Triclinic, P1 Hall symbol: -P 1 a = 7.8805 (8) Å b = 8.4673 (12) Å c = 12.3973 (14) Å $a = 104.166 (11)^{\circ}$ $\beta = 94.502 (9)^{\circ}$ $\gamma = 104.145 (10)^{\circ}$ $V = 769.29 (16) \text{ Å}^{3}$ Z = 2F(000) = 348

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector	$T_{\min} = 0.847, T_{\max} = 0.919$ 4945 measured reflections
Radiation source: SuperNova (Mo) X-ray Source	2703 independent reflections 1818 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.057$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 3.0^{\circ}$
ωscan	$h = -9 \longrightarrow 9$
Absorption correction: multi-scan	$k = -9 \rightarrow 10$
(CrysAlis PRO; Agilent, 2013)	$l = -14 \rightarrow 9$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.082$	Hydrogen site location: inferred from
$wR(F^2) = 0.269$	neighbouring sites

 $wR(F^2) = 0.269$ neiS = 1.09H-ato2703 reflectionsw = 1199 parameterswh0 restraints $(\Delta/\sigma)_r$ Primary atom site location: structure-invariant $\Delta \rho_{max}$ $\Delta \rho_{min}$ $\Delta \rho_{min}$

neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1481P)^2 + 0.2039P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.02 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.64 \text{ e } \text{Å}^{-3}$

 $D_{\rm x} = 1.456 {\rm Mg} {\rm m}^{-3}$

 $\theta = 3.0 - 25.0^{\circ}$

 $\mu = 0.43 \text{ mm}^{-1}$

Prism, colourless

 $0.40 \times 0.20 \times 0.20$ mm

T = 100 K

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 1164 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.61313 (17)	0.1630 (2)	0.41224 (12)	0.0305 (5)
Cl2	1.30151 (17)	0.3673 (2)	0.56261 (11)	0.0286 (5)
01	0.5171 (5)	0.5487 (5)	0.1955 (3)	0.0248 (10)
O2	0.5571 (5)	0.2458 (5)	0.2059 (3)	0.0247 (10)
O3	0.7704 (5)	0.3027 (5)	0.0993 (3)	0.0244 (10)
C1	0.4077 (7)	0.4099 (7)	0.1176 (4)	0.0196 (12)
C2	0.2748 (7)	0.4127 (7)	0.0377 (4)	0.0210 (13)
H2	0.2580	0.5184	0.0333	0.025*
C3	0.1662 (7)	0.2644 (8)	-0.0358 (4)	0.0225 (13)
C4	0.1948 (7)	0.1095 (7)	-0.0313 (5)	0.0232 (13)
H4	0.1231	0.0072	-0.0820	0.028*
C5	0.3276 (7)	0.1049 (8)	0.0470 (5)	0.0252 (14)
Н5	0.3464	-0.0005	0.0504	0.030*
C6	0.4327 (7)	0.2539 (7)	0.1202 (4)	0.0205 (13)
C7	0.4783 (8)	0.7069 (7)	0.1996 (5)	0.0297 (15)
H7A	0.5628	0.7976	0.2581	0.045*
H7B	0.3579	0.7001	0.2170	0.045*

H7C	0.4876	0.7311	0.1266	0.045*
C8	0.0147 (7)	0.2725 (8)	-0.1161 (4)	0.0258 (14)
H8A	-0.0981	0.2270	-0.0902	0.031*
H8B	0.0251	0.3927	-0.1123	0.031*
С9	0.0062 (8)	0.1778 (8)	-0.2361 (5)	0.0286 (15)
H9	0.1073	0.2072	-0.2716	0.034*
C10	-0.1295 (9)	0.0577 (8)	-0.2954 (5)	0.0335 (15)
H10A	-0.2329	0.0248	-0.2627	0.040*
H10B	-0.1250	0.0032	-0.3714	0.040*
C11	0.7283 (7)	0.2824 (7)	0.1879 (5)	0.0218 (13)
C12	0.8567 (7)	0.2914 (7)	0.2851 (4)	0.0218 (13)
C13	0.8232 (7)	0.2503 (7)	0.3850 (5)	0.0209 (13)
C14	0.9597 (7)	0.2728 (7)	0.4692 (4)	0.0216 (13)
H14	0.9352	0.2423	0.5363	0.026*
C15	1.1335 (7)	0.3406 (8)	0.4549 (4)	0.0222 (13)
C16	1.1726 (7)	0.3802 (7)	0.3571 (4)	0.0237 (13)
H16	1.2917	0.4228	0.3469	0.028*
C17	1.0337 (7)	0.3565 (8)	0.2737 (4)	0.0245 (13)
H17	1.0595	0.3855	0.2063	0.029*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0151 (8)	0.0452 (11)	0.0321 (9)	0.0026 (7)	0.0048 (6)	0.0172 (7)
C12	0.0183 (8)	0.0381 (10)	0.0272 (9)	0.0058 (7)	-0.0021 (6)	0.0082 (7)
01	0.018 (2)	0.026 (2)	0.027 (2)	0.0043 (18)	-0.0019 (16)	0.0035 (18)
O2	0.019 (2)	0.034 (2)	0.023 (2)	0.0072 (18)	0.0033 (16)	0.0102 (18)
O3	0.021 (2)	0.028 (2)	0.023 (2)	0.0034 (18)	0.0032 (16)	0.0096 (18)
C1	0.016 (3)	0.017 (3)	0.020 (3)	0.000 (2)	0.003 (2)	-0.001 (2)
C2	0.019 (3)	0.029 (3)	0.017 (3)	0.008 (3)	0.003 (2)	0.006 (2)
C3	0.019 (3)	0.030 (3)	0.020 (3)	0.008 (3)	0.009 (2)	0.007 (3)
C4	0.020 (3)	0.021 (3)	0.026 (3)	0.000 (3)	0.003 (2)	0.009 (3)
C5	0.020 (3)	0.027 (3)	0.032 (3)	0.008 (3)	0.007 (2)	0.010 (3)
C6	0.016 (3)	0.026 (3)	0.019 (3)	0.006 (2)	0.002 (2)	0.006 (2)
C7	0.024 (3)	0.021 (3)	0.038 (4)	0.005 (3)	-0.001 (3)	0.000 (3)
C8	0.018 (3)	0.023 (3)	0.033 (3)	0.003 (3)	0.000 (2)	0.007 (3)
С9	0.021 (3)	0.043 (4)	0.025 (3)	0.012 (3)	0.004 (2)	0.012 (3)
C10	0.038 (4)	0.025 (4)	0.034 (4)	0.011 (3)	-0.004 (3)	0.002 (3)
C11	0.017 (3)	0.016 (3)	0.030 (3)	0.005 (2)	0.007 (2)	0.002 (3)
C12	0.018 (3)	0.022 (3)	0.023 (3)	0.008 (2)	-0.001 (2)	0.001 (2)
C13	0.012 (3)	0.021 (3)	0.029 (3)	0.004 (2)	0.002 (2)	0.006 (2)
C14	0.021 (3)	0.024 (3)	0.020 (3)	0.010 (3)	0.001 (2)	0.002 (2)
C15	0.019 (3)	0.030 (3)	0.016 (3)	0.008 (3)	0.001 (2)	0.002 (2)
C16	0.014 (3)	0.027 (3)	0.025 (3)	0.000 (2)	0.002 (2)	0.003 (3)
C17	0.027 (3)	0.031 (4)	0.016 (3)	0.008 (3)	0.005 (2)	0.006 (3)

Geometric parameters (Å, °)

Cl1—C13	1.736 (5)	С7—Н7С	0.9800	
Cl2—C15	1.736 (5)	C8—C9	1.494 (8)	
01—C1	1.369 (6)	C8—H8A	0.9900	
O1—C7	1.436 (7)	C8—H8B	0.9900	
O2—C11	1.357 (6)	C9—C10	1.303 (9)	
O2—C6	1.414 (6)	С9—Н9	0.9500	
O3—C11	1.210 (7)	C10—H10A	0.9500	
C1—C6	1.390 (8)	C10—H10B	0.9500	
C1—C2	1.393 (7)	C11—C12	1.486 (8)	
С2—С3	1.390 (8)	C12—C13	1.393 (8)	
С2—Н2	0.9500	C12—C17	1.401 (8)	
C3—C4	1.397 (8)	C13—C14	1.382 (7)	
С3—С8	1.520 (7)	C14—C15	1.393 (8)	
C4—C5	1.385 (8)	C14—H14	0.9500	
C4—H4	0.9500	C15—C16	1.373 (8)	
С5—С6	1.383 (7)	C16—C17	1.386 (8)	
С5—Н5	0.9500	C16—H16	0.9500	
C7—H7A	0.9800	C17—H17	0.9500	
С7—Н7В	0.9800			
C1—O1—C7	115.8 (4)	C3—C8—H8B	108.5	
C11—O2—C6	115.7 (4)	H8A—C8—H8B	107.5	
O1—C1—C6	116.3 (5)	C10—C9—C8	124.8 (6)	
01—C1—C2	125.6 (5)	С10—С9—Н9	117.6	
C6—C1—C2	118.1 (5)	С8—С9—Н9	117.6	
C3—C2—C1	121.5 (5)	C9—C10—H10A	120.0	
С3—С2—Н2	119.2	C9—C10—H10B	120.0	
C1—C2—H2	119.2	H10A-C10-H10B	120.0	
C2—C3—C4	119.1 (5)	O3—C11—O2	122.4 (5)	
C2—C3—C8	119.7 (5)	O3—C11—C12	123.7 (5)	
C4—C3—C8	121.2 (5)	O2—C11—C12	114.0 (5)	
C5—C4—C3	120.0 (5)	C13—C12—C17	117.4 (5)	
C5—C4—H4	120.0	C13—C12—C11	128.7 (5)	
С3—С4—Н4	120.0	C17—C12—C11	113.8 (5)	
C6—C5—C4	119.9 (5)	C14—C13—C12	121.1 (5)	
С6—С5—Н5	120.0	C14—C13—Cl1	115.1 (4)	
С4—С5—Н5	120.0	C12—C13—Cl1	123.8 (4)	
C5—C6—C1	121.4 (5)	C13—C14—C15	119.5 (5)	
C5—C6—O2	119.1 (5)	C13—C14—H14	120.3	
C1—C6—O2	119.3 (5)	C15—C14—H14	120.3	
O1—C7—H7A	109.5	C16—C15—C14	121.3 (5)	
O1—C7—H7B	109.5	C16—C15—Cl2	120.5 (4)	
H7A—C7—H7B	109.5	C14—C15—Cl2	118.2 (4)	
O1—C7—H7C	109.5	C15—C16—C17	118.2 (5)	
H7A—C7—H7C	109.5	C15—C16—H16	120.9	
H7B—C7—H7C	109.5	C17—C16—H16	120.9	

C9—C8—C3 C9—C8—H8A C3—C8—H8A C9—C8—H8B	114.9 (4) 108.5 108.5 108.5	C16—C17—C12 C16—C17—H17 C12—C17—H17	122.4 (5) 118.8 118.8
C7—O1—C1—C6	-173.9 (5)	C6—O2—C11—O3	-7.7 (7)
C7—O1—C1—C2	5.8 (7)	C6—O2—C11—C12	173.5 (4)
O1—C1—C2—C3	-177.9 (5)	O3—C11—C12—C13	-171.3 (6)
C6—C1—C2—C3	1.7 (8)	O2-C11-C12-C13	7.5 (8)
C1—C2—C3—C4	-1.9 (8)	O3—C11—C12—C17	11.4 (8)
C1—C2—C3—C8	175.7 (5)	O2—C11—C12—C17	-169.9 (4)
C2—C3—C4—C5	1.2 (8)	C17—C12—C13—C14	-0.1 (8)
C8—C3—C4—C5	-176.3 (5)	C11—C12—C13—C14	-177.4 (5)
C3—C4—C5—C6	-0.5 (8)	C17—C12—C13—Cl1	-178.2 (4)
C4—C5—C6—C1	0.4 (8)	C11—C12—C13—Cl1	4.6 (9)
C4—C5—C6—O2	174.5 (4)	C12-C13-C14-C15	1.2 (8)
O1—C1—C6—C5	178.7 (5)	Cl1—C13—C14—C15	179.4 (4)
C2-C1-C6-C5	-1.0 (8)	C13-C14-C15-C16	-2.3 (9)
O1—C1—C6—O2	4.6 (7)	C13—C14—C15—Cl2	179.9 (4)
C2-C1-C6-O2	-175.1 (4)	C14-C15-C16-C17	2.2 (9)
C11—O2—C6—C5	103.7 (6)	Cl2—C15—C16—C17	180.0 (4)
C11—O2—C6—C1	-82.0 (6)	C15-C16-C17-C12	-1.1 (9)
C2—C3—C8—C9	130.2 (6)	C13—C12—C17—C16	0.1 (8)
C4—C3—C8—C9	-52.2 (7)	C11—C12—C17—C16	177.8 (5)
C3—C8—C9—C10	122.7 (7)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C2—H2···O3 ⁱ	0.95	2.52	3.339 (7)	144
С17—Н17…ОЗ	0.95	2.39	2.746 (6)	101

Symmetry code: (i) -x+1, -y+1, -z.