Structure Reports
 Online
 ISSN 1600-5368

 Bis\{2-[(5-hydroxypentyl)iminomethyl]-

 Bis\{2-[(5-hydroxypentyl)iminomethyl]-phenolato- $\left.\kappa^{2} N, O^{1}\right\}$ copper(II)

phenolato- $\left.\kappa^{2} N, O^{1}\right\}$ copper(II)}Ritwik Modak, Santu Patra, Senjuti Mandal, Yeasin Sikdar and Sanchita Goswami*

Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, USA
Correspondence e-mail: sgchem@caluniv.ac.in
Received 2 April 2013; accepted 17 June 2013

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.030 ; w R$ factor $=0.096 ;$ data-to-parameter ratio $=17.8$.

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2}\right)_{2}\right]$, the $\mathrm{Cu}^{\mathrm{II}}$ ion, located on a center of inversion, is coordinated by two singly deprotonated Schiff base ligands derived from condensation of salicyldehyde and 1 -aminopentan- $5-\mathrm{ol}$. The imino N and phenol O atoms from both ligands offer a square-planar arrangement around the metal ion. The $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}$ bond lengths are 2.0146 (15) and 1.8870 (12) \AA, respectively. Since the $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ bond lengths are different, it can be concluded that the resulting geometry of the complex is distorted. The aliphatic -OH group of the ligand is not coordinated and points away from the metal coordination zone and actively participates in hydrogen bonding connecting two other units and thus stabilizing the crystal lattice. This results in a two-dimensional extended array parallel to (201).

Related literature

For the participation of the copper ion in the active sites of a large number of metalloproteins involved in important biological electron-transfer reactions, see: Reedijk \& Bouwman (1999); Solomon et al. (2001); Hatcher \& Karlin (2004); Kaim \& Rall (1996). For references regarding the t_{4} value, see: Yang et al. (2007). For similar $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}$ bond lengths, see: Maeda et al. (2003); Akimova et al. (2001); Pawlicki et al. (2007); Verma et al. (2011); Khandar \& Nejati (2000); Sundaravel et al. (2009).

Experimental

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2}\right)_{2}\right]$
$V=1146.70(12) \AA^{3}$
$M_{r}=476.07$
Monoclinic, $P 2_{1} / c$
$Z=2$
Mo $K \alpha$ radiation
$a=11.8815$ (8) A
$\mu=0.99 \mathrm{~mm}^{-1}$
$b=5.2219$ (3) \AA
$T=296 \mathrm{~K}$
$c=18.9588$ (12) A
$0.8 \times 0.6 \times 0.4 \mathrm{~mm}$
$\beta=102.876$ (2) ${ }^{\circ}$

Data collection

Bruker APEXII SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.497, T_{\text {max }}=0.674$
13343 measured reflections 2549 independent reflections 2174 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030 \quad 143$ parameters
$w R\left(F^{2}\right)=0.096$
$S=0.95$
2549 reflections

H -atom parameters constrained
$\Delta \rho_{\max }=0.27 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.30 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}_{1}-\mathrm{H} 1 \cdots \mathrm{O}^{\text {i }}$	0.82	2.07	$2.864(2)$	163
$\mathrm{C}^{\mathrm{H}}-\mathrm{H} 1 B \cdots \mathrm{O}^{2}$	0.97	2.34	$2.771(2)$	106

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+2,-y+1,-z+1$.
Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).

metal-organic compounds

Financial support from the University Grants Commission for a junior research fellowship to SM [Sanction No. UGC/ 749/Jr. Fellow(Sc.)] and an RFSMS fellowship (Sanction No. UGC/740/RFSMS) to RM is gratefully acknowledged. We thank the DST for a junior research fellowship to YS (Sanction No. SERB/F/1585/2012-13). DST-FIST is acknowledged for providing the X-ray diffraction facility at the Department of Chemistry, University of Calcutta.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2221).

References

Akimova, E. V. R., Nazarenko, A. Y., Chen, L., Krieger, P. W., Herrera, A. M., Tarasov, V. V. \& Robinson, P. D. (2001). Inorg. Chim. Acta, 324, 1-15.
Bruker (2004). APEX2 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Hatcher, L. Q. \& Karlin, K. D. (2004). J. Biol. Inorg. Chem. 9, 669-683
Kaim, W. \& Rall, J. (1996). Angew. Chem. Int. Ed. 35, 43-60.
Khandar, A. A. \& Nejati, M. (2000). Polyhedron, 19, 607-613.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Maeda, H., Osuka, A., Ishikawa, Y., Aritome, I., Hisaeda, Y. \& Furuta, H. (2003). Org. Lett. 5, 1293-1296.

Pawlicki, M., Kanska, I. \& Latos-Grazynski, L. (2007). Inorg. Chem. 46, 65756584.

Reedijk, J. \& Bouwman, E. (1999). In Bioinorganic Catalysis, 2nd ed. New York: Marcel Dekker.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Solomon, E. I., Chen, P., Metz, M., Lee, S.-K. \& Palmer, A. E. (2001). Angew. Chem. Int. Ed. 40, 4570-4590.
Sundaravel, K., Suresh, E. \& Palaniandavar, M. (2009). Inorg. Chim. Acta, 362, 199-207.
Verma, P., Weir, J., Mirica, L., Stack, T. \& Daniel, P. (2011). Inorg. Chem. 50 9816-9825.
Yang, L., Powell, D. R. \& Houser, R. P. (2007). Dalton Trans. pp. 955-964.

supporting information

Acta Cryst. (2013). E69, m412-m413 [https://doi.org/10.1107/S1600536813016802]

Bis\{2-[(5-hydroxypentyl)iminomethyl]phenolato- $\left.\kappa^{2} N, O^{1}\right\} \operatorname{copper}(\mathrm{II})$

Ritwik Modak, Santu Patra, Senjuti Mandal, Yeasin Sikdar and Sanchita Goswami

S1. Comment

Coordination chemistry of copper complexes of chelating ligands is a subject of continuing importance in connection with their structural, spectral, and redox properties in general and from the standpoint of their relevance to coppercontaining metalloproteins in particular (Solomon et al., 2001; Hatcher \& Karlin, 2004; Kaim \& Rall, 1996). Copper ions are found in the active sites of a large number of metalloproteins involved in important biological electron-transfer reactions, as well as in redox processes of molecular oxygen (Reedijk \& Bouwman, 1999).
Crystallographic analysis reveals that the asymmetric unit of the title mononuclear complex consists of one $\mathrm{Cu}^{\mathrm{II}}$ ion, which is located on a center of inversion, and two singly deprotonated ligands, HL^{-}, with the phenolic O atom being deprotonated. The phenolic O atoms (O 2 and $\mathrm{O} 2 _\mathrm{a}$; symmetry code: (a) 2-x, 1-y, 1-z) and the imine N atoms (N 1 and N1_a; symmetry code: (a) 2-x, 1-y, 1-z) from both the ligands coordinate to the same $\mathrm{Cu}^{\mathrm{II}}$ center in the trans disposition to each other. The aliphatic - OH group remains as a pendant arm and is pointing away from the metal coordination zone. This uncoordinated oxygen atom, O 1 , is $8.083 \AA$ away from the $\mathrm{Cu}^{\mathrm{II}}$ ion. The complex has a τ_{4} value of $0(\alpha=\mathrm{O} 2-\mathrm{Cu}-$ O2_a $=180.00$ and $\beta=\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1 _\mathrm{a}=180.00$) as a consequence of the Cu lying on a center of inversion thus supporting an assignment of distorted square planar geometry around the central metal ion (Yang et al. 2007). The complex exhibits a $\mathrm{Cu} 1-\mathrm{N} 1$ bond length of 2.0146 (16) \AA. In a perfectly square planar CuN_{4} moiety, the average $\mathrm{Cu}^{\mathrm{II}}-$ N distance lies in the range of 1.980 (9) and 2.018 (9) \AA (Maeda et al.,2003, Akimova et al., 2001). The $\mathrm{Cu}-\mathrm{N}$ bond length value is comparable to the previously reported nearly planar $\mathrm{Cu}{ }^{\text {II }}$ porphyrins ($2.020 \AA, 2.065 \AA, 1.977 \AA$) (Pawlicki et al. 2007). It agrees well with the $\mathrm{CuN}_{2} \mathrm{O}_{2}$ monomer ($\tau_{4}=1 / 5$) having average $\mathrm{Cu}^{\mathrm{II}}-\mathrm{N}$ bond length range of $2.071 \AA$ (Verma et al., 2011). The $\mathrm{Cu} 1-\mathrm{O} 2$ bond distance in the complex is 1.8871 (11) \AA. It is well established in the literature that in a nearly square planar geometry, the $\mathrm{Cu}^{\mathrm{II}}$ - phenolic oxygen bond length lies in the range of $1.84 \AA$ to $1.93 \AA$ (Khandar \& Nejati, 2000; Sundaravel et al., 2009). Since the $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ bond lengths are different, therefore, it can be concluded that the resultant geometry is a distorted square planar one. The pendant -OH group actively participates in H -bonding and connects two other units stabilizing the crystal lattice. As a result we have a twodimensional extended array parallel to 201 plane with $\mathrm{O} 1-\mathrm{H} 1--\mathrm{O} 1$ length 2.864 (2) Å.

S2. Experimental

The solution of 5-amino-1-pentanol ($3 \mathrm{mmol}, 650.8 \mathrm{mg}$) in methanol $(20 \mathrm{~mL})$ was added to the solution of salicylaldehyde ($3 \mathrm{mmol}, 366.36 \mathrm{mg}$) in methanol (20 ml) under vigorous stirring condition. The resulting reaction mixture was subsequently refluxed with stirring for 4 h . Completion of the reaction checked by thin layer chromatography (TLC). After reaction was complete, the solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, followed by filtration and the solvent was removed under reduced pressure to get the ligand. Now a solution of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{mmol}, 299.47 \mathrm{mg})$ in methanol (20 ml) was added to the solution of the prepared crude ligand ($3 \mathrm{mmol}, 621.84 \mathrm{mg}$) in methanol $(20 \mathrm{ml})$ with constant stirring. The resulting mixture was stirred for 3 h at room temperature and then filtered. The resulting dark brown solution on
slow evaporation gave a brown amorphous solid which was washed with diethyl ether properly and dried in vacuum desiccator containing anhydrous CaCl_{2}. X -ray quality single crystals were grown from acetonitrile by the slow evaporation method.

S3. Refinement

The H atoms were placed in calculated positions and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, aliphatic $\mathrm{C}-\mathrm{H}=0.97$ \AA and $\mathrm{O}-\mathrm{H}=0.82 \AA$.

Figure 1
The structure of (I), showing the atom-labelling scheme. H atoms omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A view of the two-dimensional hydrogen-bonded framework viewed along the b axis. Hydrogen bonding interactions are shown by dashed lines.

Bis\{2-[(5-hydroxypentyl)iminomethyl]phenolato- $\left.\kappa^{2} N, O^{1}\right\} \operatorname{copper}($ II)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2}\right)_{2}\right]$
$F(000)=502.0$
$M_{r}=476.07$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2 ybc
$a=11.8815$ (8) \AA
$b=5.2219$ (3) \AA
$c=18.9588(12) \AA$
$\beta=102.876(2)^{\circ}$
$V=1146.70(12) \AA^{3}$
$Z=2$
$D_{\mathrm{x}}=1.385 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 13343 reflections
$\theta=1.8-27.5^{\circ}$
$\mu=0.99 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, dark green
$0.8 \times 0.6 \times 0.4 \mathrm{~mm}$

Data collection

Bruker APEXII SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.497, T_{\text {max }}=0.674$

$$
\begin{aligned}
& 13343 \text { measured reflections } \\
& 2549 \text { independent reflections } \\
& 2174 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.027 \\
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=1.8^{\circ} \\
& h=-14 \rightarrow 14 \\
& k=-6 \rightarrow 6 \\
& l=-24 \rightarrow 24
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.096$
$S=0.95$
2549 reflections
143 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Cu1	1.0000	0.5000	0.5000	$0.03217(12)$
O1	$0.50800(15)$	$0.8210(3)$	$0.72046(8)$	$0.0640(4)$
H1	0.4971	0.9476	0.7436	0.096^{*}
O2	$1.04519(10)$	$0.2230(2)$	$0.44865(7)$	$0.0440(3)$
N1	$0.83417(13)$	$0.4686(3)$	$0.44597(8)$	$0.0338(3)$
C1	$0.74512(14)$	$0.6417(3)$	$0.46237(9)$	$0.0372(4)$
H1A	0.6794	0.6453	0.4215	0.045^{*}
H1B	0.7761	0.8140	0.4697	0.045^{*}
C2	$0.70561(16)$	$0.5564(3)$	$0.52942(10)$	$0.0389(4)$
H2A	0.6628	0.3975	0.5191	0.047^{*}
H2B	0.7727	0.5236	0.5680	0.047^{*}
C3	$0.63016(16)$	$0.7546(4)$	$0.55460(10)$	$0.0420(4)$
H3A	0.5621	0.7829	0.5163	0.050^{*}
H3B	0.6722	0.9150	0.5629	0.050^{*}
C4	$0.59209(16)$	$0.6804(4)$	$0.62336(10)$	$0.0422(4)$
H4A	0.5346	0.5457	0.6122	0.051^{*}

H4B	0.6579	0.6127	0.6581	0.051^{*}
C5	$0.5428(2)$	$0.8995(5)$	$0.65661(12)$	$0.0571(5)$
H5A	0.6001	1.0342	0.6685	0.068^{*}
H5B	0.4768	0.9679	0.6222	0.068^{*}
C6	$0.79987(14)$	$0.3133(3)$	$0.39297(9)$	$0.0375(4)$
H6	0.7230	0.3277	0.3687	0.045^{*}
C7	$0.86641(14)$	$0.1202(3)$	$0.36685(8)$	$0.0362(4)$
C8	$0.98489(15)$	$0.0831(3)$	$0.39729(9)$	$0.0357(3)$
C9	$1.04061(17)$	$-0.1203(3)$	$0.36855(10)$	$0.0437(4)$
H9	1.1187	-0.1500	0.3873	0.052^{*}
C10	$0.9822(18)$	$-0.2730(4)$	$0.31404(10)$	$0.0485(5)$
H10	1.0212	-0.4049	0.2967	0.058^{*}
C11	$0.86595(19)$	$-0.2348(4)$	$0.28419(10)$	$0.0502(5)$
H11	0.8270	-0.3392	0.2469	0.060^{*}
C12	$0.80936(19)$	$-0.0411(4)$	$0.31035(11)$	$0.0452(4)$
H12	0.7313	-0.0149	0.2904	0.054^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.02804(18)$	$0.03330(18)$	$0.03728(18)$	$0.00376(10)$	$0.01180(12)$	$-0.00224(10)$
O1	$0.0847(11)$	$0.0657(9)$	$0.0553(8)$	$0.0084(8)$	$0.0448(8)$	$0.0046(7)$
O2	$0.0337(6)$	$0.0444(7)$	$0.0535(7)$	$0.0065(5)$	$0.0088(5)$	$-0.0123(6)$
N1	$0.0299(7)$	$0.0393(8)$	$0.0358(7)$	$0.0058(5)$	$0.0146(6)$	$0.0026(5)$
C1	$0.0309(8)$	$0.0425(9)$	$0.0405(8)$	$0.0106(7)$	$0.0131(6)$	$0.0037(7)$
C2	$0.0356(9)$	$0.0362(8)$	$0.0498(10)$	$0.0068(7)$	$0.0203(7)$	$0.0052(7)$
C3	$0.0427(9)$	$0.0422(9)$	$0.0471(9)$	$0.0112(7)$	$0.0226(8)$	$0.0079(7)$
C4	$0.0442(10)$	$0.0426(9)$	$0.0444(9)$	$0.0038(7)$	$0.0198(7)$	$0.0042(7)$
C5	$0.0746(15)$	$0.0529(12)$	$0.0562(12)$	$0.0147(11)$	$0.0415(11)$	$0.0116(10)$
C6	$0.0312(8)$	$0.0467(9)$	$0.0359(8)$	$0.0016(7)$	$0.0103(6)$	$0.0029(7)$
C7	$0.0402(9)$	$0.0369(9)$	$0.0350(8)$	$-0.0010(7)$	$0.0158(7)$	$0.0006(7)$
C8	$0.0400(9)$	$0.0318(8)$	$0.0386(8)$	$0.0028(7)$	$0.0161(7)$	$0.0015(7)$
C9	$0.0481(10)$	$0.0371(9)$	$0.0486(10)$	$0.0099(8)$	$0.0167(8)$	$-0.0001(8)$
C10	$0.0693(13)$	$0.0356(9)$	$0.0464(10)$	$0.0071(9)$	$0.0252(9)$	$-0.0032(8)$
C11	$0.0651(13)$	$0.0474(10)$	$0.0399(9)$	$-0.0069(9)$	$0.0156(8)$	$-0.0066(8)$
C12	$0.0459(11)$	$0.0537(11)$	$0.0369(9)$	$-0.0038(8)$	$0.0110(8)$	$-0.0025(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$1.8870(12)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.488(3)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$1.8870(12)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
$\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.0146(15)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9700
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.0146(15)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9700
$\mathrm{O} 1-\mathrm{C} 5$	$1.424(2)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9700
$\mathrm{O} 1-\mathrm{H} 1$	0.8200	$\mathrm{C} 6-\mathrm{C} 7$	$1.436(2)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.298(2)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{~N} 1-\mathrm{C} 6$	$1.285(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.411(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.476(2)$	$\mathrm{C} 7-\mathrm{C} 12$	$1.411(3)$

$\mathrm{C} 1-\mathrm{C} 2$	1.517 (2)
C1-H1A	0.9700
C1-H1B	0.9700
C2-C3	1.514 (2)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
C3-C4	1.522 (2)
C3-H3A	0.9700
C3-H3B	0.9700
$\mathrm{O} 2 \mathrm{i}-\mathrm{Cu} 1-\mathrm{O} 2$	179.999 (1)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	91.94 (5)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	88.06 (5)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Cu} 1-\mathrm{N} 1$	88.06 (5)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$	91.94 (5)
N1 ${ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{N} 1$	179.998 (1)
C5-O1-H1	109.5
C8-O2-Cu1	130.21 (11)
C6-N1-C1	115.71 (15)
C6-N1-Cu1	123.56 (12)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	120.58 (11)
N1-C1-C2	111.53 (13)
N1-C1-H1A	109.3
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.3
N1-C1-H1B	109.3
C2- $21-\mathrm{H} 1 \mathrm{~B}$	109.3
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.0
C3-C2-C1	112.27 (14)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.2
C3-C2-H2B	109.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.2
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.9
C2-C3-C4	113.92 (15)
C2-C3-H3A	108.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.8
C2-C3-H3B	108.8
C4-C3-H3B	108.8
H3A-C3-H3B	107.7
C5-C4-C3	112.76 (15)
C5-C4-H4A	109.0

$\mathrm{C} 8-\mathrm{C} 9$	$1.423(2)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.366(3)$
$\mathrm{C} 9-\mathrm{H} 9$	0.9300
$\mathrm{C} 10-\mathrm{C} 11$	$1.386(3)$
$\mathrm{C} 10-\mathrm{H} 10$	0.9300
$\mathrm{C} 11-\mathrm{C} 12$	$1.368(3)$
$\mathrm{C} 11-\mathrm{H} 11$	0.9300
$\mathrm{C} 12-\mathrm{H} 12$	0.9300

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.0
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.0
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.0
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	107.8

O1-C5-C4 110.77 (17)
O1-C5—H5A 109.5
C4-C5—H5A 109.5
O1-C5—H5B 109.5
C4-C5—H5B 109.5
H5A-C5-H5B 108.1
N1-C6-C7 127.59 (15)
N 1 - $\mathrm{C} 6-\mathrm{H} 6 \quad 116.2$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \quad 116.2$
C8-C7-C12 119.69 (16)
C8-C7-C6 122.08 (15)
C12-C7-C6 118.20 (16)
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7 \quad 124.29$ (15)
$\mathrm{O} 2-\mathrm{C} 8$ - $\mathrm{C} 9 \quad 118.78$ (16)
C7-C8-C9 116.92 (16)
C10-C9-C8 121.64 (18)
C10-C9—H9 119.2
C8-C9—H9 119.2
C9-C10-C11 121.12 (17)
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \quad 119.4$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10 \quad 119.4$
C12-C11-C10 118.98 (18)
C12-C11—H11 120.5
$\mathrm{C} 10-\mathrm{C} 11$ - $\mathrm{H} 11 \quad 120.5$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 7 \quad 121.66$ (19)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \quad 119.2$
$\mathrm{C} 7-\mathrm{C} 12 — \mathrm{H} 12 \quad 119.2$

Symmetry code: (i) $-x+2,-y+1,-z+1$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{ii}}$	0.82	2.07	$2.864(2)$	163

supporting information

$\begin{array}{lllll}\mathrm{C} 1 — \mathrm{H} 1 B \cdots \mathrm{O} 2^{\mathrm{i}} & 0.97 & 2.34 & 2.771(2) & 106\end{array}$
Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $-x+1, y+1 / 2,-z+3 / 2$.

