[Journal logo]

Volume 69 
Part 7 
Page m384  
July 2013  

Received 10 May 2013
Accepted 5 June 2013
Online 15 June 2013

Key indicators
Single-crystal X-ray study
T = 185 K
Mean [sigma](C-C) = 0.004 Å
R = 0.025
wR = 0.064
Data-to-parameter ratio = 10.7
Details
Open access

Poly[hexaaqua([mu]9-cyclohexane-1,2,3,4,5,6-hexacarboxylato)trimanganese(II)]

aThe Class 10, 2011, Norman Bethune College of Medicine, Jilin University, 828 Xinmin Street, Changchun 130021, Jilin Province, People's Republic of China,bDepartment of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun 130021, Jilin Province, People's Republic of China, and cLaboratory Teaching of Pathology, Norman Bethune College of Medicine, Jilin University, 828 Xinmin Street, Changchun 130021, Jilin Province, People's Republic of China
Correspondence e-mail: quanchengshi66@163.com

The asymmetric unit of the title compound, [Mn3(C12H6O12)(H2O)6]n, comprises one MnII ion, one third of a cyclohexane-1,2,3,4,5,6-hexacarboxylate anion and two aqua ligands. The anion is completed by application of a -3 axis. The MnII ion is six-coordinated by six O atoms from two aqua ligands and three different cyclohexacarboxylate anions in an octahedral geometry. The six carboxylate groups adopt a bridging bidentate mode to ligate the MnII ions. Thus, each cyclohexane-1,2,3,4,5,6-hexacarboxylate anion adopts a [mu]9-connected mode, ligating nine different MnII ions and forming a three-dimensional framework. In the framework, there are strong O-H...O hydrogen-bonding interactions, which further stabilize the crystal structure.

Related literature

For background to compounds with metal-organic framework structures, see: Wang et al. (2010[Wang, G. H., Lei, Y. Q., Wang, N., He, R. L., Jia, H. Q., Hu, N. H. & Xu, J. W. (2010). Cryst. Growth Des. 10, 534-540.]); Bourne et al. (2001[Bourne, S. A., Lu, J., Moulton, B. & Zaworotko, M. J. (2001). Chem. Commun. pp. 861-862.]). For their properties, uses and topologies, see: O'Keeffe et al. (2000[O'Keeffe, M., Eddaoudi, M., Li, H., Reineke, T. & Yaghi, O. M. (2000). J. Solid State Chem. 152, 3-20.]); Song et al. (2012[Song, S. Y., Song, X. Z., Zhao, S. N., Qin, C., Su, S. Q., Zhu, M., Hao, Z. M. & Zhang, H. J. (2012). Dalton Trans. 41, 10412-10421.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn3(C12H6O12)(H2O)6]

  • Mr = 615.09

  • Trigonal, [R \overline 3]

  • a = 14.5432 (4) Å

  • c = 14.9445 (10) Å

  • V = 2737.4 (2) Å3

  • Z = 6

  • Mo K[alpha] radiation

  • [mu] = 2.15 mm-1

  • T = 185 K

  • 0.25 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.616, Tmax = 0.725

  • 5063 measured reflections

  • 1200 independent reflections

  • 1098 reflections with I > 2[sigma](I)

  • Rint = 0.025

Refinement
  • R[F2 > 2[sigma](F2)] = 0.025

  • wR(F2) = 0.064

  • S = 1.08

  • 1200 reflections

  • 112 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.75 e Å-3

  • [Delta][rho]min = -0.28 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O2W-H2A...O2Wi 0.81 (2) 2.31 (2) 3.116 (2) 178 (3)
O2W-H2A...O3ii 0.81 (2) 2.56 (3) 2.955 (2) 111 (2)
O1W-H1B...O4iii 0.87 (2) 1.92 (2) 2.774 (3) 169 (3)
O1W-H1B...O3iii 0.87 (2) 2.52 (3) 2.942 (3) 111 (2)
O2W-H2B...O1ii 0.84 (2) 2.06 (2) 2.883 (3) 169 (3)
O1W-H1A...O1Wiv 0.84 (2) 2.01 (2) 2.8513 (18) 175 (3)
Symmetry codes: (i) x-y+1, x, -z+1; (ii) [-y+{\script{4\over 3}}, x-y+{\script{2\over 3}}, z-{\script{1\over 3}}]; (iii) [x-y+{\script{2\over 3}}, x+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (iv) [y-{\script{1\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{4\over 3}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2441 ).


Acknowledgements

The authors thank Jilin University for supporting this work.

References

Bourne, S. A., Lu, J., Moulton, B. & Zaworotko, M. J. (2001). Chem. Commun. pp. 861-862.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
O'Keeffe, M., Eddaoudi, M., Li, H., Reineke, T. & Yaghi, O. M. (2000). J. Solid State Chem. 152, 3-20.  [Web of Science] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Song, S. Y., Song, X. Z., Zhao, S. N., Qin, C., Su, S. Q., Zhu, M., Hao, Z. M. & Zhang, H. J. (2012). Dalton Trans. 41, 10412-10421.  [CSD] [CrossRef] [ChemPort] [PubMed]
Wang, G. H., Lei, Y. Q., Wang, N., He, R. L., Jia, H. Q., Hu, N. H. & Xu, J. W. (2010). Cryst. Growth Des. 10, 534-540.  [CrossRef] [ChemPort]


Acta Cryst (2013). E69, m384  [ doi:10.1107/S1600536813015626 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.