supplementary materials


bx2444 scheme

Acta Cryst. (2013). E69, o1098-o1099    [ doi:10.1107/S1600536813015936 ]

2-(2,5-Dimethoxyphenyl)-4,5-diphenyl-1-(prop-2-en-1-yl)-1H-imidazole

M. Akkurt, S. K. Mohamed, A. A. Marzouk, A. A. Abdelhamid and F. Santoyo-Gonzalez

Abstract top

In the title compound, C26H24N2O2, the two phenyl and the 2,5-dimethoxyphenyl rings are inclined to the imidazole ring at dihedral angles of 30.38 (8), 56.59 (9) and 73.11 (9)°, respectively. In the crystal, molecules are linked by pairs of C-H...O interactions into centrosymmetric dimers with graph-set notation R22(8). C-H...[pi] interactions are also observed.

Comment top

Recently, much attention has been devoted to vinyl and allyl N-substituted imidazole compunds due to their interesting properties and high reactivities. Such compounds in addition to threir flourecent properties (Berezin et al., 2009; Rambo et al., 2010) they can polymerize to obtain chromophoric polymers (Koszykowska et al., 2009). In addition their quaternery salts are acting as ionic catalists (Min et al., 2006) which are widely used in green chemistry applications. In this context the title compound has been synthesized among series of allyl imidazole derivatives and herein we report its crystal structure.

In the title compound (I, Fig. 1), the two phenyl (C4–C9 and C10–C15) and 2-(2,5-dimethoxyphenyl) (C19–C24) rings are inclined to the N1/N2/C1–C3 imidazole ring at angles of 30.38 (8), 56.59 (9) and 73.11 (9)°, respectively. All bond lengths and angles are normal and are corresponding to those reported in a similar structure (Akkurt et al., 2013a,b; Mohamed et al., 2013a,b). In the crystal the molecules are linked by C— H··· O interactions into centrosymmetric dimers with graph-set notation R22(8) (Bernstein et al., 1995).C—H···π interactions are also observed,Table 1, Fig2.

Related literature top

For chemical properties and applications of imidazoles with an unsaturated side chain, see, for example: Koszykowska et al. (2009); Berezin et al. (2009); Rambo et al. (2010); Min et al. (2006). For similar structures, see: Akkurt et al. (2013a,b); Mohamed et al. (2013a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to our reported method (Mohamed et al. 2013a) in 85% yield. Colourless prisms suitable for X-ray analyses were obtained by slow evaporation of a solution of (I) in ethanol, m.p. 471–473 K.

Refinement top

All H atoms were placed in geometrically, with C—H = 0.95–0.99 Å, and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular strcuture of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen bonding and packing of the title compound viewing along the b axis. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-(2,5-Dimethoxyphenyl)-4,5-diphenyl-1-(prop-2-en-1-yl)-1H-imidazole top
Crystal data top
C26H24N2O2Z = 2
Mr = 396.47F(000) = 420
Triclinic, P1Dx = 1.291 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3117 (14) ÅCell parameters from 2470 reflections
b = 10.5217 (17) Åθ = 2.2–26.3°
c = 13.425 (2) ŵ = 0.08 mm1
α = 105.938 (2)°T = 100 K
β = 101.846 (2)°Prism, colourless
γ = 107.772 (2)°0.26 × 0.16 × 0.08 mm
V = 1020.1 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4193 independent reflections
Radiation source: sealed tube3184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
phi and ω scansθmax = 26.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.979, Tmax = 0.993k = 1313
11527 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.1427P]
where P = (Fo2 + 2Fc2)/3
4193 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C26H24N2O2γ = 107.772 (2)°
Mr = 396.47V = 1020.1 (3) Å3
Triclinic, P1Z = 2
a = 8.3117 (14) ÅMo Kα radiation
b = 10.5217 (17) ŵ = 0.08 mm1
c = 13.425 (2) ÅT = 100 K
α = 105.938 (2)°0.26 × 0.16 × 0.08 mm
β = 101.846 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4193 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3184 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.993Rint = 0.036
11527 measured reflectionsθmax = 26.5°
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.125Δρmax = 0.23 e Å3
S = 1.05Δρmin = 0.26 e Å3
4193 reflectionsAbsolute structure: ?
273 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22127 (15)0.57663 (13)0.01565 (9)0.0294 (4)
O20.51365 (14)0.51988 (12)0.37054 (9)0.0246 (3)
N10.03320 (16)0.34760 (14)0.28257 (10)0.0200 (4)
N20.19265 (16)0.21885 (14)0.23560 (10)0.0197 (4)
C10.1675 (2)0.34409 (16)0.24524 (12)0.0187 (4)
C20.0647 (2)0.13719 (17)0.26932 (12)0.0191 (5)
C30.0325 (2)0.21832 (16)0.29722 (12)0.0187 (5)
C40.1839 (2)0.18601 (17)0.34015 (12)0.0196 (5)
C50.2095 (2)0.29766 (17)0.41145 (13)0.0221 (5)
C60.3463 (2)0.26861 (19)0.45693 (13)0.0244 (5)
C70.4602 (2)0.12872 (19)0.43134 (14)0.0257 (5)
C80.4395 (2)0.01733 (19)0.35825 (14)0.0253 (5)
C90.3029 (2)0.04563 (17)0.31312 (13)0.0219 (5)
C100.05668 (19)0.00280 (17)0.27544 (13)0.0194 (4)
C110.0409 (2)0.11491 (17)0.18480 (13)0.0234 (5)
C120.0405 (2)0.24371 (18)0.19320 (14)0.0264 (5)
C130.0564 (2)0.26260 (18)0.29232 (14)0.0248 (5)
C140.0700 (2)0.15270 (17)0.38256 (13)0.0228 (5)
C150.0696 (2)0.02425 (17)0.37420 (13)0.0210 (5)
C160.3286 (2)0.18032 (18)0.19444 (13)0.0229 (5)
C170.2732 (2)0.12340 (19)0.07169 (14)0.0280 (5)
C180.2775 (3)0.0033 (2)0.01278 (16)0.0392 (7)
C190.2772 (2)0.45508 (16)0.21242 (13)0.0199 (5)
C200.2057 (2)0.47090 (17)0.11627 (13)0.0221 (5)
C210.3087 (2)0.56926 (17)0.08016 (13)0.0220 (5)
C220.4852 (2)0.65115 (17)0.14076 (14)0.0238 (5)
C230.5580 (2)0.63844 (17)0.23932 (13)0.0233 (5)
C240.4555 (2)0.54150 (16)0.27547 (13)0.0202 (5)
C250.6880 (2)0.61529 (18)0.44233 (14)0.0292 (5)
C260.3278 (2)0.64720 (19)0.07022 (15)0.0303 (6)
H50.132800.394000.428900.0270*
H60.361700.345100.505800.0290*
H70.552000.109100.463700.0310*
H80.519200.078600.339100.0300*
H90.289800.031300.263200.0260*
H110.030200.103100.116400.0280*
H120.029200.319200.130600.0320*
H130.057900.350200.298300.0300*
H140.079700.165200.450700.0270*
H150.078200.050100.436700.0250*
H16A0.351400.106900.221500.0270*
H16B0.441000.265900.223400.0270*
H170.232400.178100.034500.0340*
H18A0.317600.053900.047400.0470*
H18B0.240600.026500.064600.0470*
H200.084700.414000.074200.0270*
H220.557000.716100.115400.0290*
H230.678600.696700.281700.0280*
H25A0.776800.599500.407800.0440*
H25B0.708900.597400.510800.0440*
H25C0.697900.714400.457600.0440*
H26A0.391300.748900.024800.0450*
H26B0.251200.637400.140200.0450*
H26C0.414000.603800.083100.0450*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0266 (6)0.0360 (7)0.0281 (7)0.0075 (5)0.0080 (5)0.0209 (6)
O20.0216 (6)0.0252 (6)0.0223 (6)0.0044 (5)0.0028 (5)0.0098 (5)
N10.0190 (7)0.0203 (7)0.0193 (7)0.0059 (6)0.0055 (6)0.0074 (6)
N20.0188 (7)0.0205 (7)0.0210 (7)0.0079 (6)0.0073 (6)0.0080 (6)
C10.0183 (7)0.0192 (8)0.0169 (8)0.0064 (6)0.0042 (6)0.0059 (7)
C20.0181 (8)0.0204 (8)0.0156 (8)0.0047 (7)0.0040 (6)0.0060 (7)
C30.0189 (8)0.0187 (8)0.0167 (8)0.0058 (6)0.0046 (6)0.0062 (6)
C40.0189 (8)0.0233 (9)0.0193 (8)0.0092 (7)0.0060 (6)0.0106 (7)
C50.0215 (8)0.0219 (9)0.0253 (9)0.0090 (7)0.0080 (7)0.0108 (7)
C60.0245 (8)0.0308 (9)0.0249 (9)0.0160 (8)0.0102 (7)0.0125 (8)
C70.0202 (8)0.0357 (10)0.0300 (9)0.0133 (8)0.0119 (7)0.0189 (8)
C80.0177 (8)0.0282 (9)0.0298 (9)0.0054 (7)0.0051 (7)0.0159 (8)
C90.0202 (8)0.0221 (9)0.0226 (9)0.0078 (7)0.0050 (7)0.0086 (7)
C100.0152 (7)0.0200 (8)0.0215 (8)0.0058 (6)0.0044 (6)0.0073 (7)
C110.0237 (8)0.0248 (9)0.0213 (9)0.0090 (7)0.0068 (7)0.0085 (7)
C120.0296 (9)0.0217 (9)0.0248 (9)0.0100 (7)0.0080 (7)0.0043 (7)
C130.0241 (8)0.0206 (9)0.0326 (10)0.0099 (7)0.0093 (7)0.0123 (8)
C140.0205 (8)0.0256 (9)0.0236 (9)0.0073 (7)0.0077 (7)0.0121 (7)
C150.0180 (8)0.0216 (9)0.0226 (8)0.0068 (7)0.0069 (7)0.0072 (7)
C160.0194 (8)0.0249 (9)0.0260 (9)0.0093 (7)0.0084 (7)0.0096 (7)
C170.0249 (9)0.0345 (10)0.0263 (9)0.0113 (8)0.0113 (7)0.0114 (8)
C180.0452 (12)0.0426 (12)0.0293 (10)0.0187 (10)0.0155 (9)0.0073 (9)
C190.0194 (8)0.0190 (8)0.0224 (8)0.0073 (7)0.0100 (7)0.0067 (7)
C200.0197 (8)0.0213 (8)0.0234 (9)0.0056 (7)0.0057 (7)0.0088 (7)
C210.0243 (8)0.0246 (9)0.0202 (8)0.0111 (7)0.0073 (7)0.0104 (7)
C220.0253 (8)0.0201 (8)0.0293 (9)0.0078 (7)0.0132 (7)0.0115 (7)
C230.0206 (8)0.0222 (9)0.0249 (9)0.0062 (7)0.0069 (7)0.0077 (7)
C240.0214 (8)0.0198 (8)0.0201 (8)0.0092 (7)0.0070 (7)0.0063 (7)
C250.0243 (9)0.0263 (9)0.0281 (9)0.0045 (8)0.0003 (7)0.0087 (8)
C260.0363 (10)0.0328 (10)0.0315 (10)0.0149 (8)0.0173 (8)0.0193 (8)
Geometric parameters (Å, º) top
O1—C211.376 (2)C20—C211.394 (3)
O1—C261.427 (2)C21—C221.382 (2)
O2—C241.374 (2)C22—C231.397 (2)
O2—C251.430 (2)C23—C241.383 (2)
N1—C11.320 (2)C5—H50.9500
N1—C31.387 (2)C6—H60.9500
N2—C11.372 (2)C7—H70.9500
N2—C21.388 (2)C8—H80.9500
N2—C161.470 (2)C9—H90.9500
C1—C191.479 (2)C11—H110.9500
C2—C31.375 (2)C12—H120.9500
C2—C101.480 (3)C13—H130.9500
C3—C41.475 (2)C14—H140.9500
C4—C51.400 (2)C15—H150.9500
C4—C91.399 (3)C16—H16A0.9900
C5—C61.391 (3)C16—H16B0.9900
C6—C71.385 (3)C17—H170.9500
C7—C81.388 (3)C18—H18A0.9500
C8—C91.386 (3)C18—H18B0.9500
C10—C111.393 (2)C20—H200.9500
C10—C151.393 (2)C22—H220.9500
C11—C121.390 (3)C23—H230.9500
C12—C131.385 (3)C25—H25A0.9800
C13—C141.383 (2)C25—H25B0.9800
C14—C151.388 (3)C25—H25C0.9800
C16—C171.505 (2)C26—H26A0.9800
C17—C181.309 (3)C26—H26B0.9800
C19—C201.382 (2)C26—H26C0.9800
C19—C241.407 (2)
C21—O1—C26117.36 (14)C5—C6—H6120.00
C24—O2—C25116.87 (14)C7—C6—H6120.00
C1—N1—C3105.42 (14)C6—C7—H7120.00
C1—N2—C2107.22 (14)C8—C7—H7120.00
C1—N2—C16125.18 (15)C7—C8—H8120.00
C2—N2—C16127.58 (15)C9—C8—H8120.00
N1—C1—N2111.60 (15)C4—C9—H9120.00
N1—C1—C19126.41 (16)C8—C9—H9120.00
N2—C1—C19121.96 (15)C10—C11—H11120.00
N2—C2—C3105.17 (15)C12—C11—H11120.00
N2—C2—C10122.53 (15)C11—C12—H12120.00
C3—C2—C10132.23 (16)C13—C12—H12120.00
N1—C3—C2110.59 (15)C12—C13—H13120.00
N1—C3—C4120.32 (15)C14—C13—H13120.00
C2—C3—C4129.08 (16)C13—C14—H14120.00
C3—C4—C5119.76 (16)C15—C14—H14120.00
C3—C4—C9121.91 (15)C10—C15—H15120.00
C5—C4—C9118.32 (16)C14—C15—H15120.00
C4—C5—C6120.51 (17)N2—C16—H16A109.00
C5—C6—C7120.36 (16)N2—C16—H16B109.00
C6—C7—C8119.68 (17)C17—C16—H16A109.00
C7—C8—C9120.17 (18)C17—C16—H16B109.00
C4—C9—C8120.90 (16)H16A—C16—H16B108.00
C2—C10—C11121.70 (15)C16—C17—H17118.00
C2—C10—C15120.15 (15)C18—C17—H17118.00
C11—C10—C15118.13 (16)C17—C18—H18A120.00
C10—C11—C12120.84 (16)C17—C18—H18B120.00
C11—C12—C13120.37 (16)H18A—C18—H18B120.00
C12—C13—C14119.31 (17)C19—C20—H20120.00
C13—C14—C15120.39 (16)C21—C20—H20120.00
C10—C15—C14120.96 (15)C21—C22—H22120.00
N2—C16—C17112.28 (14)C23—C22—H22120.00
C16—C17—C18124.22 (18)C22—C23—H23120.00
C1—C19—C20119.57 (15)C24—C23—H23120.00
C1—C19—C24121.05 (15)O2—C25—H25A109.00
C20—C19—C24119.34 (16)O2—C25—H25B109.00
C19—C20—C21120.92 (16)O2—C25—H25C109.00
O1—C21—C20115.32 (15)H25A—C25—H25B109.00
O1—C21—C22125.10 (16)H25A—C25—H25C109.00
C20—C21—C22119.58 (16)H25B—C25—H25C109.00
C21—C22—C23120.05 (16)O1—C26—H26A109.00
C22—C23—C24120.34 (16)O1—C26—H26B109.00
O2—C24—C19115.12 (15)O1—C26—H26C109.00
O2—C24—C23125.15 (15)H26A—C26—H26B109.00
C19—C24—C23119.74 (15)H26A—C26—H26C109.00
C4—C5—H5120.00H26B—C26—H26C109.00
C6—C5—H5120.00
C26—O1—C21—C2215.8 (2)C2—C3—C4—C5148.45 (17)
C26—O1—C21—C20164.74 (15)N1—C3—C4—C529.8 (2)
C25—O2—C24—C19173.84 (15)C3—C4—C5—C6176.81 (15)
C25—O2—C24—C236.6 (2)C3—C4—C9—C8177.09 (16)
C1—N1—C3—C20.58 (17)C9—C4—C5—C62.2 (2)
C1—N1—C3—C4179.16 (14)C5—C4—C9—C81.9 (2)
C3—N1—C1—N20.36 (17)C4—C5—C6—C70.7 (3)
C3—N1—C1—C19177.32 (15)C5—C6—C7—C81.3 (3)
C16—N2—C1—C190.9 (2)C6—C7—C8—C91.6 (3)
C16—N2—C2—C104.5 (2)C7—C8—C9—C40.0 (3)
C2—N2—C1—C19177.79 (14)C2—C10—C11—C12177.49 (17)
C16—N2—C2—C3178.34 (14)C11—C10—C15—C141.2 (3)
C1—N2—C2—C10176.80 (14)C2—C10—C15—C14177.22 (16)
C16—N2—C1—N1178.73 (13)C15—C10—C11—C120.9 (3)
C2—N2—C16—C1797.69 (19)C10—C11—C12—C130.2 (3)
C1—N2—C16—C1780.8 (2)C11—C12—C13—C141.0 (3)
C2—N2—C1—N10.00 (17)C12—C13—C14—C150.7 (3)
C1—N2—C2—C30.34 (16)C13—C14—C15—C100.4 (3)
N1—C1—C19—C2072.9 (2)N2—C16—C17—C18129.1 (2)
N1—C1—C19—C24109.5 (2)C1—C19—C24—C23176.09 (16)
N2—C1—C19—C20104.59 (19)C20—C19—C24—O2178.86 (15)
N2—C1—C19—C2473.1 (2)C1—C19—C24—O23.5 (2)
N2—C2—C10—C15121.30 (18)C24—C19—C20—C211.2 (3)
C3—C2—C10—C11126.7 (2)C20—C19—C24—C231.6 (3)
C3—C2—C10—C1555.0 (3)C1—C19—C20—C21176.52 (16)
N2—C2—C10—C1157.0 (2)C19—C20—C21—C220.6 (3)
N2—C2—C3—C4178.98 (15)C19—C20—C21—O1178.89 (16)
N2—C2—C3—N10.57 (17)C20—C21—C22—C232.0 (3)
C10—C2—C3—N1176.17 (16)O1—C21—C22—C23177.44 (16)
C10—C2—C3—C42.3 (3)C21—C22—C23—C241.6 (3)
C2—C3—C4—C930.5 (3)C22—C23—C24—C190.2 (3)
N1—C3—C4—C9151.19 (15)C22—C23—C24—O2179.71 (16)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the N1/N2/C1–C3, C4–C9 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···O1i0.952.543.354 (2)143
C14—H14···Cg2ii0.952.633.4083 (19)139
C25—H25B···Cg1iii0.982.843.6337 (19)139
C26—H26C···Cg4iv0.982.953.908 (2)166
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H24N2O2
Mr396.47
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.3117 (14), 10.5217 (17), 13.425 (2)
α, β, γ (°)105.938 (2), 101.846 (2), 107.772 (2)
V3)1020.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.979, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
11527, 4193, 3184
Rint0.036
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.05
No. of reflections4193
No. of parameters273
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the N1/N2/C1–C3, C4–C9 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···O1i0.952.543.354 (2)143
C14—H14···Cg2ii0.952.633.4083 (19)139
C25—H25B···Cg1iii0.982.843.6337 (19)139
C26—H26C···Cg4iv0.982.953.908 (2)166
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z.
Acknowledgements top

Manchester Metropolitan University, Erciyes University and Granada University are gratefully acknowledged for supporting this study. The authors also thank José Romero Garzón, Centro de Instrumentación Científica, Universidad de Granada, for the data collection.

references
References top

Akkurt, M., Fronczek, F. R., Mohamed, S. K., Talybov, A. H., Marzouk, A. A. E. & Abdelhamid, A. A. (2013a). Acta Cryst. E69, o527–o528.

Akkurt, M., Mohamed, S. K., Singh, K., Marzouk, A. A. & Abdelhamid, A. A. (2013b). Acta Cryst. E69, o846–o847.

Berezin, M. Y., Jeff, K. & Achilefu, S. (2009). Chemistry, 15, 3560–3566.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Koszykowska, M., Tokarek, M. & Kucharski, S. (2009). Mater. Sci. Pol. 27, 699–708.

Min, G.-H., Yim, T., Lee, H. Y., Huh, D. H., Lee, E., Mun, J., Oh, S. M. & Kim, Y. G. (2006). Bull. Korean Chem. Soc. 27, 847–852.

Mohamed, S. K., Akkurt, M., Marzouk, A. A., Abbasov, V. M. & Gurbanov, A. V. (2013a). Acta Cryst. E69, o474–o475.

Mohamed, S. K., Akkurt, M., Marzouk, A. A. E., Santoyo-Gonzalez, F. & Elremaily, M. A. A. (2013b). Acta Cryst. E69, o875–o876.

Rambo, B. M., Silver, E. S., Bielawski, C. W. & Sessler, J. L. (2010). Heterocycl. Chem. 1, 1–37.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.