Structure Reports

Online
ISSN 1600-5368

Dichloridobis(pyridine-2-selenolato$\kappa^{2} N$, Se)tin(IV)

Gunay Z. Mammadova, ${ }^{\text {a }}$ Sheyda R. Ismaylova, ${ }^{\text {a* }}$ Zhanna V. Matsulevich, ${ }^{\text {b }}$ Vladimir K. Osmanov, ${ }^{\text {b }}$ Alexander V. Borisov ${ }^{\text {b }}$ and Victor N. Khrustalev ${ }^{\text {c }}$
${ }^{\text {a }}$ Baku State University, Z. Khalilov Street 23, Baku AZ-1148, Azerbaijan, ${ }^{\text {b }}$ R. E. Alekseev Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod 603950, Russian Federation, and ${ }^{\text {c } X-R a y ~ S t r u c t u r a l ~ C e n t r e, ~ A . ~ N . ~}$ Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B-334 Moscow 119991, Russian Federation
Correspondence e-mail: isheydi02@gmail.com

Received 14 May 2013; accepted 27 May 2013

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.026 ; w R$ factor $=0.063$; data-to-parameter ratio $=31.6$.

The title compound, $\left[\mathrm{SnCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NSe}\right)_{2}\right]$, is the product of a reaction of $2,2^{\prime}$-dipyridyl diselenide with tin tetrachloride. The molecule is located about a twofold rotation axis. The coordination environment of the $\mathrm{Sn}^{\mathrm{IV}}$ atom is a distorted octahedron, with two bidentate 2-pyridineselenolate ligands inclined to each other at an angle of 83.96 (7) ${ }^{\circ}$. The two $\mathrm{Sn}-$ Cl and two $\mathrm{Sn}-\mathrm{N}$ bonds are in cis configurations, while the two $\mathrm{Sn}-\mathrm{Se}$ bonds of 2.5917 (3) \AA are in a trans configuration, with an $\mathrm{Se}-\mathrm{Sn}-\mathrm{Se}$ angle of $157.988(15)^{\circ}$. In the crystal, $\pi-\pi$ interactions between the pyridine rings [centroid-to-centroid distance of 3.758 (3) Å] and weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds link the molecules into chains along the c axis.

Related literature

For metal complexes with 2,2'-dipyridyl dichalcogenides, see: Kadooka et al. (1976a,b); Cheng et al. (1996); Kienitz et al. (1996); Bell et al. (2000); Kita et al. (2001); Kedarnath et al. (2009). For syntheses and structures of related tin(IV) compounds, see: Masaki \& Matsunami (1976); Masaki et al. (1978); Labisbal et al. (1993); Chopra et al. (1996); Ismaylova et al. (2012).

Experimental

Crystal data

$\left[\mathrm{SnCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NSe}\right)_{2}\right]$
$M_{r}=503.69$
Monoclinic, C2/c
$a=6.5174$ (4) A
$b=13.1221$ (8) A
$c=16.3066$ (9) \AA
$\beta=100.194$ (1) ${ }^{\circ}$

$$
V=1372.56(14) \AA^{3}
$$

$Z=4$
Mo $K \alpha$ radiation
$\mu=7.53 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.18 \times 0.15 \times 0.15 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.344, T_{\text {max }}=0.398$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026 \quad 78$ parameters
$w R\left(F^{2}\right)=0.063$
$S=1.00$
2464 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.79 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.87 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cl}^{\mathrm{i}}$	0.95	2.82	$3.675(3)$	151

Symmetry code: (i) $-x+1,-y+1,-z$.
Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank Professor Abel M. Maharramov for fruitful discussions and help in this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5413).

References

Bell, N. A., Gelbrich, T., Hursthouse, M. B., Mark, E., Light, M. E. \& Wilson, A. (2000). Polyhedron, 19, 2539-2546.

Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheng, Y., Emge, T. J. \& Brennan, J. G. (1996). Inorg. Chem. 35, 342-346.
Chopra, N., Damude, L. C., Dean, P. A. W. \& Vittal, J. J. (1996). Can. J. Chem. 74, 2095-2105.
Ismaylova, S. R., Matsulevich, Z. V., Borisova, G. N., Borisov, A. V. \& Khrustalev, V. N. (2012). Acta Cryst. E68, m875-m876.
Kadooka, M. M., Warner, L. G. \& Seff, K. (1976a). J. Am. Chem. Soc. 98, 75697578.

Kadooka, M. M., Warner, L. G. \& Seff, K. (1976b). Inorg. Chem. 15, 812-816.
Kedarnath, G., Jain, V. K., Wadawale, A. \& Dey, G. K. (2009). Dalton Trans. 39, 8378-8385.
Kienitz, C. O., Thöne, C. \& Jones, P. G. (1996). Inorg. Chem. 35, 3990-3997.
Kita, M., Tamai, H., Ueta, F., Fuyuhiro, A., Yamanari, K., Nakajima, K., Kojima, M., Murata, K. \& Yamashita, S. (2001). Inorg. Chim. Acta, 314, 139146.

Labisbal, E., Romero, J., Duran, M. L., Garcia-Vazquez, J. A., Sousa, A., Russo, U., Pritchard, R. \& Renson, M. (1993). J. Chem. Soc. Dalton Trans. pp. 755-758.

metal-organic compounds

Masaki, M. \& Matsunami, S. (1976). Bull. Chem. Soc. Jpn, 49, 3274-3279.
Masaki, M., Matsunami, S. \& Ueda, H. (1978). Bull. Chem. Soc. Jpn, 51, 32983301.

Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, m364-m365 [https://doi.org/10.1107/S1600536813014657]

Dichloridobis(pyridine-2-selenolato- $\kappa^{2} N$,Se)tin(IV)

Gunay Z. Mammadova, Sheyda R. Ismaylova, Zhanna V. Matsulevich, Vladimir K. Osmanov, Alexander V. Borisov and Victor N. Khrustalev

S1. Comment

The coordination chemistry of $2,2^{\prime}$-dipyridyl dichalcogenides to metal ions is a topic of current research interest owing to the application of these complexes as potential precursors for the generation of semiconducting materials (Kadooka et al., 1976a, b; Cheng et al., 1996; Kienitz et al., 1996; Bell et al., 2000; Kita et al., 2001; Kedarnath et al., 2009).
This article describes dichloridobis(pyridine-2-selenolato- $k^{2} \mathrm{~N}, \mathrm{Se}$)-tin(IV), $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Se} 2 \mathrm{Sn}$ (I), which was obtained by the reaction of $2,2^{\prime}$-dipyridyl diselenide with tin tetrachloride (Fig. 1). Compound \mathbf{I} is isostructural with the monoclinic modification of the related thio-analogue reported by us very recently (Ismaylova et al., 2012). For the synthesis and structure of the triclinic modification of this thio-analogue, see: Masaki \& Matsunami (1976) and Masaki et al. (1978).
The molecule of I possesses overall intrinsic C_{2} symmetry and occupies a special position on the twofold axis. The Sn atom adopts a distorted octahedral geometry, with the two bidentate 2-pyridineselenolate ligands forming two planar four-membered chelate rings (Fig. 2). The two $\mathrm{Sn}-\mathrm{Cl}$, two $\mathrm{Sn}-\mathrm{N}$ and two $\mathrm{Sn}-\mathrm{Se}$ bonds are in cis, cis and trans configurations, respectively. The lengths of the two covalent $\mathrm{Sn}-\mathrm{Se}$ bonds [2.5917 (3) \AA] are in good accordance with those in the previously studied analogous octahedral tin(IV) complexes (Labisbal et al., 1993; Chopra et al., 1996).
In the crystal, $\pi-\pi$ interactions between the pyridine rings [centroid-to-centroid distance of 3.758 (3) \AA] and weak intermolecular $\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{C} 1$ hydrogen bonds (Fig. 3, Table 1) link the molecules of \mathbf{I} into chains along the c axis. The crystal packing of the chains is stacking along the a axis.

S2. Experimental

A solution of $\mathrm{SnCl}_{4}(0.042 \mathrm{~g}, 0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ was added to a solution of 2, 2'-dipyridyl diselenide $(0.10 \mathrm{~g}$, $0.32 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ with stirring at room temperature. After 48 h , the reaction mixture was concentrated in vacuo to a volume of about $15-20 \mathrm{ml}$, and the powder of compound \mathbf{I} was separated by filtration. The solid was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give I as yellow crystals. Yield is 25%. m.p. $=456-458 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300 \mathrm{MHz}$, $302 \mathrm{~K}): \delta=8.53(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H} 6, \mathrm{~J}=4.4 \mathrm{~Hz}), 7.80(\mathrm{t}, 2 \mathrm{H}, \mathrm{H} 4, \mathrm{~J}=7.3 \mathrm{~Hz}), 7.64(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H} 3, \mathrm{~J}=7.3 \mathrm{~Hz}), 7.35(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H} 5, \mathrm{~J}=$ $7.3 \mathrm{~Hz}, \mathrm{~J}=4.4 \mathrm{~Hz}$). Analysis, calculated for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Se}_{2} \mathrm{Sn}: \mathrm{C} 23.72$, H 1.57, $\mathrm{N} 5.51 \%$; found: C 23.84, H 1.60, N 5.56\%.

S3. Refinement

The H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and refined in the riding model with fixed isotropic displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$.

Figure 1
Reaction of $2,2^{\prime}$-dipyridyl diselenide with tin tetrachloride.

Figure 2
Molecular structure of I. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Symmetry code: (i) $-x+1,-y+1,-z$.

Figure 3
A portion of the crystal packing of \mathbf{I}, demonstrating the hydrogen-bonded chains along the c axis. Dashed lines indicate the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Dichloridobis(pyridine-2-selenolato- $\left.\kappa^{2} N, S e\right)$ tin(IV)

Crystal data

$\left[\mathrm{SnCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NSe}\right)_{2}\right]$
$M_{r}=503.69$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=6.5174$ (4) \AA
$b=13.1221$ (8) \AA
$c=16.3066(9) \AA$
$\beta=100.194$ (1) ${ }^{\circ}$
$V=1372.56(14) \AA^{3}$
$Z=4$
Data collection
Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.344, T_{\text {max }}=0.398$
$F(000)=936$
$D_{\mathrm{x}}=2.438 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4192 reflections
$\theta=2.5-32.4^{\circ}$
$\mu=7.53 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, yellow
$0.18 \times 0.15 \times 0.15 \mathrm{~mm}$

9918 measured reflections
2464 independent reflections
2149 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=32.5^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-19 \rightarrow 19$
$l=-24 \rightarrow 24$

78 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.037 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.79 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.87 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Sn1	0.5000	$0.622617(17)$	0.2500	$0.01852(6)$
Se 1	$0.16999(4)$	$0.584912(19)$	$0.140130(15)$	$0.02190(7)$
C11	$0.67676(9)$	$0.74412(5)$	$0.17723(4)$	$0.02544(12)$
N1	$0.5494(3)$	$0.49464(16)$	$0.16204(12)$	$0.0204(4)$
C2	$0.3618(4)$	$0.48906(18)$	$0.11081(14)$	$0.0209(4)$
C3	$0.3249(4)$	$0.41919(19)$	$0.04601(16)$	$0.0237(5)$
H3	0.1933	0.4158	0.0101	0.028^{*}
C4	$0.4867(4)$	$0.35439(19)$	$0.03530(16)$	$0.0263(5)$
H4	0.4663	0.3060	-0.0087	0.032^{*}
C5	$0.6780(4)$	$0.35981(19)$	$0.08840(17)$	$0.0257(5)$
H5	0.7885	0.3153	0.0814	0.031^{*}
C6	$0.7045(4)$	$0.4308(2)$	$0.15137(16)$	$0.0235(5)$
H6	0.8348	0.4350	0.1881	0.028^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	$0.01985(11)$	$0.01864(11)$	$0.01647(10)$	0.000	$0.00155(8)$	0.000
Se1	$0.01990(12)$	$0.02333(13)$	$0.02113(12)$	$0.00098(8)$	$-0.00005(9)$	$-0.00003(8)$
C11	$0.0290(3)$	$0.0255(3)$	$0.0217(3)$	$-0.0056(2)$	$0.0040(2)$	$0.0025(2)$
N1	$0.0221(9)$	$0.0210(9)$	$0.0176(9)$	$-0.0009(7)$	$0.0018(7)$	$0.0003(7)$
C2	$0.0218(10)$	$0.0201(10)$	$0.0203(10)$	$-0.0017(8)$	$0.0026(8)$	$0.0022(8)$
C3	$0.0270(11)$	$0.0237(11)$	$0.0191(11)$	$-0.0029(9)$	$0.0001(9)$	$0.0003(8)$
C4	$0.0353(13)$	$0.0206(11)$	$0.0231(11)$	$-0.0035(9)$	$0.0055(10)$	$-0.0029(9)$
C5	$0.0317(12)$	$0.0215(11)$	$0.0247(12)$	$0.0035(9)$	$0.0074(10)$	$0.0004(9)$
C6	$0.0245(11)$	$0.0239(11)$	$0.0227(11)$	$0.0007(9)$	$0.0054(9)$	$0.0033(9)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Sn} 1-\mathrm{N} 1$	$2.268(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.389(4)$
$\mathrm{Sn} 1-\mathrm{Cl} 1$	$2.4002(6)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500

Sn1-Se1	2.5917 (3)	C4-C5	1.388 (4)
Se1-C2	1.893 (2)	C4-H4	0.9500
N1-C6	1.348 (3)	C5-C6	1.375 (4)
N1-C2	1.355 (3)	C5-H5	0.9500
C2-C3	1.388 (3)	C6-H6	0.9500
N1—Sn1-N1 ${ }^{\text {i }}$	84.47 (10)	N1-C2—Se1	111.86 (17)
N1-Sn1-Cl1	92.57 (5)	C3-C2-Se1	126.74 (19)
$\mathrm{N} 1{ }^{\mathrm{i}}$ - $\mathrm{Sn} 1-\mathrm{Cl1}$	159.83 (5)	C2-C3-C4	117.9 (2)
$\mathrm{Cl1}-\mathrm{Sn} 1-\mathrm{Cl1}{ }^{\text {i }}$	96.75 (3)	C2-C3-H3	121.1
N1—Sn1—Se1	67.34 (5)	C4-C3-H3	121.1
N1 ${ }^{\text {i }}$-Sn1—Se1	95.89 (5)	C5-C4-C3	120.5 (2)
$\mathrm{Cl} 1-\mathrm{Sn} 1-\mathrm{Se} 1$	101.376 (16)	C5-C4-H4	119.7
Cl1 ${ }^{\text {i }}$ - Sn1—Se1	93.231 (16)	C3-C4-H4	119.7
N1-Sn1-Se1 ${ }^{\text {i }}$	95.89 (5)	C6-C5-C4	118.8 (2)
Sel-Snl—Se1 ${ }^{\text {i }}$	157.988 (15)	C6-C5-H5	120.6
C2-Se1-Sn1	78.30 (7)	C4-C5-H5	120.6
C6-N1-C2	120.2 (2)	N1-C6-C5	121.3 (2)
C6-N1-Sn1	137.34 (17)	N1-C6-H6	119.4
C2-N1-Sn1	102.49 (15)	C5-C6-H6	119.4
N1-C2-C3	121.4 (2)		
N1—Sn1-Se1-C2	-0.40 (9)	Se1 ${ }^{\text {i }}$ - Sn1-N1-C2	165.79 (14)
N1 ${ }^{\text {i }}$-Sn1-Se1-C2	-81.89 (9)	C6-N1-C2-C3	-0.8 (3)
C11-Sn1-Se1-C2	87.63 (7)	$\mathrm{Sn} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	179.55 (19)
$\mathrm{Cl1}{ }^{\mathrm{i}}$-Sn1-Se1-C2	-174.81 (7)	C6-N1-C2-Se1	178.91 (17)
Se1- ${ }^{\text {i }}$ Sn1-Se1-C2	-43.00 (7)	Sn1-N1-C2-Se1	-0.77 (17)
N1- ${ }^{\text {i }}$ - $1-\mathrm{N} 1-\mathrm{C} 6$	-80.3 (2)	Sn1-Se1-C2-N1	0.67 (15)
$\mathrm{Cl1}-\mathrm{Sn} 1-\mathrm{N} 1-\mathrm{C} 6$	79.7 (2)	Sn1-Se1-C2-C3	-179.7 (2)
$\mathrm{Cl1}{ }^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{N} 1-\mathrm{C} 6$	-162.64 (17)	N1-C2-C3-C4	0.3 (4)
Se1-Sn1-N1-C6	-179.0 (3)	$\mathrm{Se} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-179.38(18)
Se1-Sn1-N1-C6	-13.8 (2)	C2-C3-C4-C5	0.3 (4)
$\mathrm{N} 1-\mathrm{Sn} 1-\mathrm{N} 1-\mathrm{C} 2$	99.31 (15)	C3-C4-C5-C6	-0.4 (4)
$\mathrm{Cl1}-\mathrm{Sn} 1-\mathrm{N} 1-\mathrm{C} 2$	-100.69 (14)	C2-N1-C6-C5	0.7 (4)
$\mathrm{Cl1}{ }^{\mathrm{i}}$-Sn1-N1-C2	16.9 (3)	$\mathrm{Sn} 1-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	-179.76 (18)
Se1-Sn1-N1-C2	0.56 (12)	C4-C5-C6-N1	-0.1 (4)

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cl1} 1 \mathrm{i}$	0.95	2.82	$3.675(3)$	151

Symmetry code: (ii) $-x+1,-y+1,-z$.

