

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 1,5-Bis(2-methoxybenzylidene)thiocarbonohydrazide methanol monosolvate

# Jianfeng Yu,<sup>a</sup> Shiming Tang,<sup>a</sup> Jingbin Zeng<sup>a</sup> and Zifeng Yan<sup>b</sup>\*

<sup>a</sup>Department of Chemistry, College of Science, China University of Petroleum, Oingdao 266555, People's Republic of China, and <sup>b</sup>Sate Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, People's Republic of China

Correspondence e-mail: zfyancat@163.com

Received 20 May 2013; accepted 19 June 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.049; wR factor = 0.171; data-to-parameter ratio = 13.9.

The title compound, C<sub>17</sub>H<sub>18</sub>N<sub>4</sub>O<sub>2</sub>S·CH<sub>3</sub>OH, was synthesized by the condensation reaction of o-methoxybenzaldehyde with thiocarbohydrazide in methanol. The two benzene rings are inclined each to other at 31.7 (1)°. Intermolecular  $N-H \cdots O$ and bifurcated  $O-H \cdots N(S)$  hydrogen bonds link two thiocarbonohydrazide and two solvent molecules into a centrosymmetric unit. These units, related by translation along the b axis, are further aggregated into columns through N-H···S hydrogen bonds.

### **Related literature**

For biological activities of thiocarbohydrazides, see: Liang (2003); Bacchi et al. (2005). For the crystal structures of related compounds, see: Fang et al. (2006); Feng et al. (2011); Zhao (2011).



4769 measured reflections 3324 independent reflections

 $R_{\rm int} = 0.024$ 

2766 reflections with  $I > 2\sigma(I)$ 

### **Experimental**

#### Crystal data

| $C_{17}H_{18}N_4O_2S\cdot CH_4O$ | $\gamma = 79.550 \ (3)^{\circ}$           |
|----------------------------------|-------------------------------------------|
| $M_r = 374.46$                   | V = 969.3 (3) Å <sup>3</sup>              |
| Friclinic, P1                    | Z = 2                                     |
| a = 7.7223 (15)  Å               | Mo $K\alpha$ radiation                    |
| p = 10.232 (2) Å                 | $\mu = 0.19 \text{ mm}^{-1}$              |
| c = 12.648 (3) Å                 | T = 296  K                                |
| $\alpha = 85.938 \ (3)^{\circ}$  | $0.25 \times 0.21 \times 0.18 \text{ mm}$ |
| $\beta = 80.796 \ (3)^{\circ}$   |                                           |

#### Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2007)  $T_{\min} = 0.954, T_{\max} = 0.966$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.049$ | 240 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.171$               | H-atom parameters constrained                              |
| S = 1.01                        | $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 3324 reflections                | $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ |

### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                    | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-------------------------------------|------|--------------|--------------|---------------------------|
| O3-H3···S1 <sup>i</sup>             | 0.82 | 2.80         | 3.534 (2)    | 150                       |
| $O3-H3\cdots N4^{i}$                | 0.82 | 2.36         | 3.028 (3)    | 139                       |
| $N3-H3A\cdots O3$                   | 0.86 | 2.38         | 3.126 (3)    | 145                       |
| $N1 - H1 \cdot \cdot \cdot S1^{ii}$ | 0.86 | 2.57         | 3.4184 (19)  | 169                       |

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 2, -z.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge the financial support of the Fundamental Research Funds for the Central Universities (grant No. 12CX04091A).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5415).

#### References

Bacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, G., Rodriguez-Arguelles, M. C., Rogolino, D., Solinas, C. & Zani, F. (2005). J. Inorg. Biochem. 99, 397-408.

Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Fang, X.-N., Xu, Y.-P., Guo, X.-F. & Zeng, X.-R. (2006). Acta Cryst. E62, o1052-o1054.

Feng, L., Ji, H., Wang, R., Ge, H. & Li, L. (2011). Acta Cryst. E67, o1514.

Liang, F.-Z. (2003). J. Shandong Normal Univ. (Nat. Sci.), 18, 50-51.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhao, X. (2011). Acta Cryst. E67, o2133.

# supporting information

Acta Cryst. (2013). E69, o1147 [https://doi.org/10.1107/S1600536813016954]

# 1,5-Bis(2-methoxybenzylidene)thiocarbonohydrazide methanol monosolvate

# Jianfeng Yu, Shiming Tang, Jingbin Zeng and Zifeng Yan

# S1. Comment

Schiff bases of thiocarbohydrazide are impotant organic intermediates owing to their biological activities (Liang, 2003; Bacchi *et al.*, 2005). In a continuation of structural study of Schiff bases of thiocarbohydrazide (Fang *et al.*, 2006; Feng *et al.*, 2011; Zhao, 2011), we present here the title compound (I).

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in 1,5-bis[(1E)-(2-methoxy-phenyl)methylene]- thiocarbonohydrazide ethanol solvate (Fang, *et al.*, 2006), N'', N'''-bis(1-phenylethylidene)thiocarbonohydrazide (Feng *et al.*, 2011) and N'', N'''-bis(4-methoxybenzylidene)thiocarbonohydrazide methanol solvate (Zhao, 2011).

In the crystal, the benzene ring C3—C8 and the benzene ring C11—C16 are inclined each to other at 31.7 (1)°. In the crystal, intermolecular N—H…O and bifurcated O—H…N(S) hydrogen bonds (Table 1) link two *M* and two solvent molecules into centrosymmetric unit. These units related by translation along the *b* axis are further aggregated into columns through the N—H…S hydrogen bonds (Table 1).

# **S2. Experimental**

A 50 ml flask was charged with a magnetic stir bar, *o*-methoxybenzaldehyde (1 mmol), thiocarbohydrazide (0.5 mmol) in 20 ml me thanol. After stirring 3 h at 373 K, the resulting mixture was cooled to room temperature, and recrystalized from methanol, and afforded the title compound as a crystalline solid.

# **S3. Refinement**

All H atoms were placed in geometrically idealized positions (C—H 0.93–0.96 Å, N—H 0.86 Å, O—H 0.82 Å) and treated as riding on their parent atoms, with  $U_{iso}(H) = 1.2-1.5U_{eq}(C,O, N)$ .



### Figure 1

The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.

1,5-Bis(2-methoxybenzylidene)thiocarbonohydrazide methanol monosolvate

# Crystal data

 $C_{17}H_{18}N_4O_2S \cdot CH_4O$   $M_r = 374.46$ Triclinic, *P*1 *a* = 7.7223 (15) Å *b* = 10.232 (2) Å *c* = 12.648 (3) Å *a* = 85.938 (3)° *β* = 80.796 (3)° *y* = 79.550 (3)° *V* = 969.3 (3) Å<sup>3</sup>

# Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2007)  $T_{\min} = 0.954, T_{\max} = 0.966$ 

# Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.049$  $wR(F^2) = 0.171$ S = 1.013324 reflections 240 parameters 0 restraints Z = 2 F(000) = 396  $D_x = 1.283 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2955 reflections  $\theta = 3.0-28.1^{\circ}$   $\mu = 0.19 \text{ mm}^{-1}$ T = 296 K Block, colourless  $0.25 \times 0.21 \times 0.18 \text{ mm}$ 

4769 measured reflections 3324 independent reflections 2766 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.024$  $\theta_{max} = 25.0^\circ, \theta_{min} = 1.6^\circ$  $h = -8 \rightarrow 9$  $k = -9 \rightarrow 12$  $l = -15 \rightarrow 13$ 

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.3851P]$ where  $P = (F_o^2 + 2F_c^2)/3$ 

| $(\Delta/\sigma)_{\rm max} = 0.010$                        | Extinction correction: SHELXL97 (Sheldrick,                    |
|------------------------------------------------------------|----------------------------------------------------------------|
| $\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$  | 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| $\Delta \rho_{\rm min} = -0.21 \text{ e}  \text{\AA}^{-3}$ | Extinction coefficient: 0.038 (7)                              |

Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     |             |              |               | IT */IT                    |  |
|-----|-------------|--------------|---------------|----------------------------|--|
|     | X           | У            | Z             | $U_{\rm iso}$ $V_{\rm eq}$ |  |
| N1  | 0.4120 (3)  | 0.85311 (18) | 0.10378 (15)  | 0.0503 (5)                 |  |
| H1  | 0.4497      | 0.9278       | 0.0942        | 0.060*                     |  |
| N2  | 0.3689 (3)  | 0.80149 (19) | 0.20555 (15)  | 0.0524 (5)                 |  |
| N3  | 0.3445 (2)  | 0.66888 (17) | 0.04305 (15)  | 0.0476 (5)                 |  |
| H3A | 0.3322      | 0.6395       | 0.1087        | 0.057*                     |  |
| N4  | 0.3114 (2)  | 0.59365 (18) | -0.03557 (15) | 0.0480 (5)                 |  |
| 01  | 0.2688 (4)  | 1.0468 (2)   | 0.44226 (17)  | 0.1014 (9)                 |  |
| O2  | 0.1142 (3)  | 0.27193 (17) | 0.08315 (18)  | 0.0739 (6)                 |  |
| S1  | 0.43309 (9) | 0.85466 (6)  | -0.10545 (5)  | 0.0567 (3)                 |  |
| C1  | 0.3953 (3)  | 0.7867 (2)   | 0.01844 (18)  | 0.0438 (5)                 |  |
| C2  | 0.3709 (3)  | 0.8750 (3)   | 0.28184 (19)  | 0.0574 (6)                 |  |
| H2  | 0.3972      | 0.9601       | 0.2666        | 0.069*                     |  |
| C3  | 0.3324 (4)  | 0.8276 (3)   | 0.3932 (2)    | 0.0644 (7)                 |  |
| C4  | 0.3466 (6)  | 0.6932 (3)   | 0.4199 (3)    | 0.0963 (11)                |  |
| H4  | 0.3800      | 0.6319       | 0.3662        | 0.116*                     |  |
| C5  | 0.3117 (8)  | 0.6491 (4)   | 0.5254 (3)    | 0.144 (2)                  |  |
| H5  | 0.3207      | 0.5585       | 0.5428        | 0.173*                     |  |
| C6  | 0.2634 (8)  | 0.7397 (5)   | 0.6049 (3)    | 0.137 (2)                  |  |
| H6  | 0.2389      | 0.7098       | 0.6760        | 0.164*                     |  |
| C7  | 0.2510 (6)  | 0.8722 (4)   | 0.5809 (3)    | 0.1038 (12)                |  |
| H7  | 0.2214      | 0.9324       | 0.6354        | 0.125*                     |  |
| C8  | 0.2826 (4)  | 0.9174 (3)   | 0.4751 (2)    | 0.0720 (7)                 |  |
| C9  | 0.2107 (7)  | 1.1424 (4)   | 0.5220 (3)    | 0.1161 (15)                |  |
| H9A | 0.0990      | 1.1274       | 0.5620        | 0.174*                     |  |
| H9B | 0.1962      | 1.2301       | 0.4885        | 0.174*                     |  |
| H9C | 0.2977      | 1.1346       | 0.5695        | 0.174*                     |  |
| C10 | 0.2413 (3)  | 0.4934 (2)   | 0.0006 (2)    | 0.0487 (5)                 |  |
| H10 | 0.2192      | 0.4771       | 0.0744        | 0.058*                     |  |
| C11 | 0.1943 (3)  | 0.4031 (2)   | -0.0700(2)    | 0.0543 (6)                 |  |
| C12 | 0.2091 (4)  | 0.4269 (3)   | -0.1782 (2)   | 0.0731 (8)                 |  |
| H12 | 0.2533      | 0.5019       | -0.2087       | 0.088*                     |  |
| C13 | 0.1593 (5)  | 0.3415 (4)   | -0.2435 (3)   | 0.0937 (11)                |  |

| H13  | 0.1698     | 0.3585     | -0.3173      | 0.112*      |  |
|------|------------|------------|--------------|-------------|--|
| C14  | 0.0940 (4) | 0.2309 (4) | -0.1973 (3)  | 0.0958 (12) |  |
| H14  | 0.0581     | 0.1741     | -0.2404      | 0.115*      |  |
| C15  | 0.0809 (4) | 0.2032 (3) | -0.0901 (3)  | 0.0804 (9)  |  |
| H15  | 0.0392     | 0.1268     | -0.0607      | 0.097*      |  |
| C16  | 0.1297 (3) | 0.2888 (2) | -0.0246 (3)  | 0.0600 (7)  |  |
| C17  | 0.0616 (5) | 0.1520 (3) | 0.1332 (4)   | 0.0952 (11) |  |
| H17A | -0.0618    | 0.1534     | 0.1290       | 0.143*      |  |
| H17B | 0.0787     | 0.1458     | 0.2070       | 0.143*      |  |
| H17C | 0.1326     | 0.0766     | 0.0970       | 0.143*      |  |
| 03   | 0.3985 (3) | 0.4521 (2) | 0.22744 (16) | 0.0803 (6)  |  |
| H3   | 0.4610     | 0.4009     | 0.1842       | 0.121*      |  |
| C18  | 0.2837 (6) | 0.3838 (4) | 0.2970 (3)   | 0.1132 (14) |  |
| H18A | 0.3517     | 0.3184     | 0.3393       | 0.170*      |  |
| H18B | 0.2173     | 0.3406     | 0.2563       | 0.170*      |  |
| H18C | 0.2031     | 0.4454     | 0.3434       | 0.170*      |  |
|      |            |            |              |             |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------------|-------------|-------------|-------------|--------------|--------------|--------------|
| N1         | 0.0627 (11) | 0.0401 (10) | 0.0515 (11) | -0.0201 (8)  | -0.0034 (8)  | -0.0085 (8)  |
| N2         | 0.0588 (11) | 0.0468 (10) | 0.0529 (11) | -0.0149 (9)  | -0.0028 (8)  | -0.0086 (9)  |
| N3         | 0.0554 (10) | 0.0389 (9)  | 0.0514 (10) | -0.0155 (8)  | -0.0049 (8)  | -0.0098(8)   |
| N4         | 0.0496 (10) | 0.0398 (9)  | 0.0569 (11) | -0.0113 (8)  | -0.0059 (8)  | -0.0129 (8)  |
| O1         | 0.172 (2)   | 0.0723 (14) | 0.0597 (12) | -0.0446 (15) | 0.0175 (13)  | -0.0220 (10) |
| O2         | 0.0782 (12) | 0.0486 (10) | 0.1034 (16) | -0.0266 (9)  | -0.0268 (11) | 0.0098 (10)  |
| <b>S</b> 1 | 0.0740 (4)  | 0.0492 (4)  | 0.0532 (4)  | -0.0275 (3)  | -0.0076 (3)  | -0.0062 (3)  |
| C1         | 0.0403 (10) | 0.0361 (10) | 0.0555 (12) | -0.0073 (8)  | -0.0049 (9)  | -0.0098 (9)  |
| C2         | 0.0680 (14) | 0.0541 (13) | 0.0526 (13) | -0.0203 (11) | -0.0022 (11) | -0.0106 (11) |
| C3         | 0.0760 (16) | 0.0634 (16) | 0.0527 (14) | -0.0142 (13) | -0.0024 (12) | -0.0053 (12) |
| C4         | 0.140 (3)   | 0.0634 (18) | 0.0710 (19) | -0.0009 (19) | 0.0064 (19)  | -0.0020 (15) |
| C5         | 0.235 (6)   | 0.077 (2)   | 0.085 (3)   | 0.015 (3)    | 0.022 (3)    | 0.022 (2)    |
| C6         | 0.212 (5)   | 0.102 (3)   | 0.066 (2)   | 0.021 (3)    | 0.007 (3)    | 0.017 (2)    |
| C7         | 0.146 (3)   | 0.101 (3)   | 0.0549 (17) | -0.007(2)    | -0.0002 (19) | -0.0093 (17) |
| C8         | 0.0876 (19) | 0.0748 (18) | 0.0527 (14) | -0.0158 (15) | -0.0034 (13) | -0.0082 (13) |
| C9         | 0.188 (4)   | 0.087 (2)   | 0.074 (2)   | -0.047 (3)   | 0.019 (2)    | -0.0335 (19) |
| C10        | 0.0453 (11) | 0.0381 (11) | 0.0653 (14) | -0.0105 (9)  | -0.0103 (10) | -0.0080 (10) |
| C11        | 0.0439 (11) | 0.0452 (12) | 0.0758 (16) | -0.0115 (9)  | -0.0040 (10) | -0.0185 (11) |
| C12        | 0.0740 (17) | 0.0731 (18) | 0.0786 (19) | -0.0300 (14) | -0.0008 (14) | -0.0262 (15) |
| C13        | 0.098 (2)   | 0.109 (3)   | 0.083 (2)   | -0.042 (2)   | 0.0038 (17)  | -0.044(2)    |
| C14        | 0.085 (2)   | 0.095 (2)   | 0.118 (3)   | -0.0436 (19) | 0.0095 (19)  | -0.062(2)    |
| C15        | 0.0646 (16) | 0.0599 (16) | 0.122 (3)   | -0.0255 (13) | 0.0028 (16)  | -0.0369 (17) |
| C16        | 0.0412 (11) | 0.0383 (12) | 0.102 (2)   | -0.0056 (9)  | -0.0084 (12) | -0.0193 (12) |
| C17        | 0.082 (2)   | 0.0633 (18) | 0.148 (3)   | -0.0364 (16) | -0.026 (2)   | 0.026 (2)    |
| O3         | 0.1011 (15) | 0.0707 (13) | 0.0658 (12) | -0.0183 (11) | 0.0032 (10)  | -0.0064 (10) |
| C18        | 0.152 (4)   | 0.103 (3)   | 0.084 (2)   | -0.050 (3)   | 0.014 (2)    | 0.000 (2)    |
|            |             |             |             |              |              |              |

Geometric parameters (Å, °)

| N1—C1             | 1.351 (3)   | С7—Н7              | 0.9300    |  |
|-------------------|-------------|--------------------|-----------|--|
| N1—N2             | 1.370 (3)   | С9—Н9А             | 0.9600    |  |
| N1—H1             | 0.8600      | С9—Н9В             | 0.9600    |  |
| N2—C2             | 1.268 (3)   | С9—Н9С             | 0.9600    |  |
| N3—C1             | 1.335 (3)   | C10—C11            | 1.458 (3) |  |
| N3—N4             | 1.381 (2)   | C10—H10            | 0.9300    |  |
| N3—H3A            | 0.8600      | C11—C12            | 1.363 (4) |  |
| N4—C10            | 1.269 (3)   | C11—C16            | 1.404 (3) |  |
| 01                | 1.350 (4)   | C12—C13            | 1.386 (4) |  |
| 01                | 1.419 (4)   | C12—H12            | 0.9300    |  |
| O2—C16            | 1.350 (4)   | C13—C14            | 1.377 (5) |  |
| Q2-C17            | 1.435 (3)   | C13—H13            | 0.9300    |  |
| S1-C1             | 1.672 (2)   | C14—C15            | 1.356 (5) |  |
| C2—C3             | 1.459 (4)   | C14—H14            | 0.9300    |  |
| C2—H2             | 0.9300      | C15—C16            | 1.385 (4) |  |
| C3—C4             | 1.382 (4)   | C15—H15            | 0.9300    |  |
| C3—C8             | 1.395 (4)   | C17—H17A           | 0.9600    |  |
| C4—C5             | 1.379 (5)   | C17—H17B           | 0.9600    |  |
| C4—H4             | 0.9300      | C17—H17C           | 0.9600    |  |
| C5—C6             | 1.378 (6)   | O3—C18             | 1.391 (4) |  |
| С5—Н5             | 0.9300      | O3—H3              | 0.8200    |  |
| C6—C7             | 1.358 (6)   | C18—H18A           | 0.9600    |  |
| С6—Н6             | 0.9300      | C18—H18B           | 0.9600    |  |
| С7—С8             | 1.383 (4)   | C18—H18C           | 0.9600    |  |
| C1N1N2            | 119 98 (18) | O1                 | 109.5     |  |
| C1 - N1 - H1      | 120.0       | H9A - C9 - H9C     | 109.5     |  |
| N2—N1—H1          | 120.0       | H9B - C9 - H9C     | 109.5     |  |
| $C_2 = N_2 = N_1$ | 116 55 (19) | N4-C10-C11         | 122.0(2)  |  |
| C1 - N3 - N4      | 120.89 (19) | N4—C10—H10         | 119.0     |  |
| C1 - N3 - H3A     | 119.6       | C11—C10—H10        | 119.0     |  |
| N4—N3—H3A         | 119.6       | C12— $C11$ — $C16$ | 119.1 (2) |  |
| C10—N4—N3         | 113.93 (19) | C12-C11-C10        | 122.2 (2) |  |
| C8-01-C9          | 117.2 (3)   | C16—C11—C10        | 118.7 (2) |  |
| C16—O2—C17        | 118.8 (3)   | C11—C12—C13        | 121.2 (3) |  |
| N3—C1—N1          | 114.5 (2)   | C11—C12—H12        | 119.4     |  |
| N3—C1—S1          | 125.35 (17) | C13—C12—H12        | 119.4     |  |
| N1—C1—S1          | 120.10 (16) | C14—C13—C12        | 118.8 (4) |  |
| N2—C2—C3          | 120.8 (2)   | C14—C13—H13        | 120.6     |  |
| N2—C2—H2          | 119.6       | C12—C13—H13        | 120.6     |  |
| С3—С2—Н2          | 119.6       | C15—C14—C13        | 121.4 (3) |  |
| C4—C3—C8          | 118.6 (3)   | C15—C14—H14        | 119.3     |  |
| C4—C3—C2          | 120.9 (3)   | C13—C14—H14        | 119.3     |  |
| C8—C3—C2          | 120.5 (2)   | C14—C15—C16        | 119.9 (3) |  |
| C5—C4—C3          | 120.5 (3)   | C14—C15—H15        | 120.0     |  |
| C5—C4—H4          | 119.7       | C16—C15—H15        | 120.0     |  |

| C3—C4—H4   | 119.7     | O2—C16—C15    | 123.9 (3) |
|------------|-----------|---------------|-----------|
| C6—C5—C4   | 119.7 (4) | O2—C16—C11    | 116.5 (2) |
| С6—С5—Н5   | 120.1     | C15—C16—C11   | 119.5 (3) |
| С4—С5—Н5   | 120.1     | O2—C17—H17A   | 109.5     |
| C7—C6—C5   | 120.8 (4) | O2—C17—H17B   | 109.5     |
| С7—С6—Н6   | 119.6     | H17A—C17—H17B | 109.5     |
| С5—С6—Н6   | 119.6     | O2—C17—H17C   | 109.5     |
| C6—C7—C8   | 119.8 (3) | H17A—C17—H17C | 109.5     |
| С6—С7—Н7   | 120.1     | H17B—C17—H17C | 109.5     |
| С8—С7—Н7   | 120.1     | С18—О3—Н3     | 109.5     |
| O1—C8—C7   | 124.6 (3) | O3—C18—H18A   | 109.5     |
| O1—C8—C3   | 115.0 (2) | O3—C18—H18B   | 109.5     |
| C7—C8—C3   | 120.4 (3) | H18A—C18—H18B | 109.5     |
| O1—C9—H9A  | 109.5     | O3—C18—H18C   | 109.5     |
| O1—C9—H9B  | 109.5     | H18A—C18—H18C | 109.5     |
| Н9А—С9—Н9В | 109.5     | H18B—C18—H18C | 109.5     |
|            |           |               |           |

# Hydrogen-bond geometry (Å, °)

| D—H···A                  | <i>D</i> —Н | H···A | D··· $A$    | D—H··· $A$ |
|--------------------------|-------------|-------|-------------|------------|
| O3—H3…S1 <sup>i</sup>    | 0.82        | 2.80  | 3.534 (2)   | 150        |
| O3—H3····N4 <sup>i</sup> | 0.82        | 2.36  | 3.028 (3)   | 139        |
| N3—H3 <i>A</i> ···O3     | 0.86        | 2.38  | 3.126 (3)   | 145        |
| N1—H1···S1 <sup>ii</sup> | 0.86        | 2.57  | 3.4184 (19) | 169        |
| N3—H3 <i>A</i> ···N2     | 0.86        | 2.21  | 2.591 (3)   | 106        |

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*+2, -*z*.