organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis(2-meth­­oxy­benzyl­­idene)thio­carbonohydrazide methanol monosolvate

aDepartment of Chemistry, College of Science, China University of Petroleum, Qingdao 266555, People's Republic of China, and bSate Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, People's Republic of China
*Correspondence e-mail: zfyancat@163.com

(Received 20 May 2013; accepted 19 June 2013; online 22 June 2013)

The title compound, C17H18N4O2S·CH3OH, was synthesized by the condensation reaction of o-meth­oxy­benzaldehyde with thio­carbohydrazide in methanol. The two benzene rings are inclined each to other at 31.7 (1)°. Inter­molecular N—H⋯O and bifurcated O—H⋯N(S) hydrogen bonds link two thio­carbonohydrazide and two solvent mol­ecules into a centrosymmetric unit. These units, related by translation along the b axis, are further aggregated into columns through N—H⋯S hydrogen bonds.

Related literature

For biological activities of thio­carbohydrazides, see: Liang (2003[Liang, F.-Z. (2003). J. Shandong Normal Univ. (Nat. Sci.), 18, 50-51.]); Bacchi et al. (2005[Bacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, G., Rodriguez-Arguelles, M. C., Rogolino, D., Solinas, C. & Zani, F. (2005). J. Inorg. Biochem. 99, 397-408.]). For the crystal structures of related compounds, see: Fang et al. (2006[Fang, X.-N., Xu, Y.-P., Guo, X.-F. & Zeng, X.-R. (2006). Acta Cryst. E62, o1052-o1054.]); Feng et al. (2011[Feng, L., Ji, H., Wang, R., Ge, H. & Li, L. (2011). Acta Cryst. E67, o1514.]); Zhao (2011[Zhao, X. (2011). Acta Cryst. E67, o2133.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N4O2S·CH4O

  • Mr = 374.46

  • Triclinic, [P \overline 1]

  • a = 7.7223 (15) Å

  • b = 10.232 (2) Å

  • c = 12.648 (3) Å

  • α = 85.938 (3)°

  • β = 80.796 (3)°

  • γ = 79.550 (3)°

  • V = 969.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.25 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.966

  • 4769 measured reflections

  • 3324 independent reflections

  • 2766 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.171

  • S = 1.01

  • 3324 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯S1i 0.82 2.80 3.534 (2) 150
O3—H3⋯N4i 0.82 2.36 3.028 (3) 139
N3—H3A⋯O3 0.86 2.38 3.126 (3) 145
N1—H1⋯S1ii 0.86 2.57 3.4184 (19) 169
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases of thiocarbohydrazide are impotant organic intermediates owing to their biological activities (Liang, 2003; Bacchi et al., 2005). In a continuation of structural study of Schiff bases of thiocarbohydrazide (Fang et al., 2006; Feng et al., 2011; Zhao, 2011), we present here the title compound (I).

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in 1,5-bis[(1E)-(2-methoxyphenyl)methylene]- thiocarbonohydrazide ethanol solvate (Fang, et al., 2006), N'',N'''-bis(1-phenylethylidene)thiocarbonohydrazide (Feng et al., 2011) and N'',N'''-bis(4-methoxybenzylidene)thiocarbonohydrazide methanol solvate (Zhao, 2011).

In the crystal, the benzene ring C3—C8 and the benzene ring C11—C16 are inclined each to other at 31.7 (1)°. In the crystal, intermolecular N—H···O and bifurcated O—H···N(S) hydrogen bonds (Table 1) link two M and two solvent molecules into centrosymmetric unit. These units related by translation along the b axis are futher aggregated into columns through the N—H···S hydrogen bonds (Table 1).

Related literature top

For biological activities of thiocarbohydrazides, see: Liang (2003); Bacchi et al. (2005). For the crystal structures of related compounds, see: Fang et al. (2006); Feng et al. (2011); Zhao (2011).

Experimental top

A 50 ml flask was charged with a magnetic stir bar, o-methoxybenzaldehyde (1 mmol), thiocarbohydrazide (0.5 mmol) in 20 ml me thanol.After stirring 3 h at 373 K, the resulting mixture was cooled to room temperature, and recrystalized from methanol, and afforded the title compound as a crystalline solid.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H 0.93–0.96 Å, N—H 0.86 Å, O—H 0.82 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C,O, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
1,5-Bis(2-methoxybenzylidene)thiocarbonohydrazide methanol monosolvate top
Crystal data top
C17H18N4O2S·CH4OZ = 2
Mr = 374.46F(000) = 396
Triclinic, P1Dx = 1.283 Mg m3
a = 7.7223 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.232 (2) ÅCell parameters from 2955 reflections
c = 12.648 (3) Åθ = 3.0–28.1°
α = 85.938 (3)°µ = 0.19 mm1
β = 80.796 (3)°T = 296 K
γ = 79.550 (3)°Block, colourless
V = 969.3 (3) Å30.25 × 0.21 × 0.18 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3324 independent reflections
Radiation source: fine-focus sealed tube2766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 89
Tmin = 0.954, Tmax = 0.966k = 912
4769 measured reflectionsl = 1513
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.1P)2 + 0.3851P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.010
3324 reflectionsΔρmax = 0.20 e Å3
240 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (7)
Crystal data top
C17H18N4O2S·CH4Oγ = 79.550 (3)°
Mr = 374.46V = 969.3 (3) Å3
Triclinic, P1Z = 2
a = 7.7223 (15) ÅMo Kα radiation
b = 10.232 (2) ŵ = 0.19 mm1
c = 12.648 (3) ÅT = 296 K
α = 85.938 (3)°0.25 × 0.21 × 0.18 mm
β = 80.796 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3324 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2766 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.966Rint = 0.024
4769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
3324 reflectionsΔρmin = 0.21 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4120 (3)0.85311 (18)0.10378 (15)0.0503 (5)
H10.44970.92780.09420.060*
N20.3689 (3)0.80149 (19)0.20555 (15)0.0524 (5)
N30.3445 (2)0.66888 (17)0.04305 (15)0.0476 (5)
H3A0.33220.63950.10870.057*
N40.3114 (2)0.59365 (18)0.03557 (15)0.0480 (5)
O10.2688 (4)1.0468 (2)0.44226 (17)0.1014 (9)
O20.1142 (3)0.27193 (17)0.08315 (18)0.0739 (6)
S10.43309 (9)0.85466 (6)0.10545 (5)0.0567 (3)
C10.3953 (3)0.7867 (2)0.01844 (18)0.0438 (5)
C20.3709 (3)0.8750 (3)0.28184 (19)0.0574 (6)
H20.39720.96010.26660.069*
C30.3324 (4)0.8276 (3)0.3932 (2)0.0644 (7)
C40.3466 (6)0.6932 (3)0.4199 (3)0.0963 (11)
H40.38000.63190.36620.116*
C50.3117 (8)0.6491 (4)0.5254 (3)0.144 (2)
H50.32070.55850.54280.173*
C60.2634 (8)0.7397 (5)0.6049 (3)0.137 (2)
H60.23890.70980.67600.164*
C70.2510 (6)0.8722 (4)0.5809 (3)0.1038 (12)
H70.22140.93240.63540.125*
C80.2826 (4)0.9174 (3)0.4751 (2)0.0720 (7)
C90.2107 (7)1.1424 (4)0.5220 (3)0.1161 (15)
H9A0.09901.12740.56200.174*
H9B0.19621.23010.48850.174*
H9C0.29771.13460.56950.174*
C100.2413 (3)0.4934 (2)0.0006 (2)0.0487 (5)
H100.21920.47710.07440.058*
C110.1943 (3)0.4031 (2)0.0700 (2)0.0543 (6)
C120.2091 (4)0.4269 (3)0.1782 (2)0.0731 (8)
H120.25330.50190.20870.088*
C130.1593 (5)0.3415 (4)0.2435 (3)0.0937 (11)
H130.16980.35850.31730.112*
C140.0940 (4)0.2309 (4)0.1973 (3)0.0958 (12)
H140.05810.17410.24040.115*
C150.0809 (4)0.2032 (3)0.0901 (3)0.0804 (9)
H150.03920.12680.06070.097*
C160.1297 (3)0.2888 (2)0.0246 (3)0.0600 (7)
C170.0616 (5)0.1520 (3)0.1332 (4)0.0952 (11)
H17A0.06180.15340.12900.143*
H17B0.07870.14580.20700.143*
H17C0.13260.07660.09700.143*
O30.3985 (3)0.4521 (2)0.22744 (16)0.0803 (6)
H30.46100.40090.18420.121*
C180.2837 (6)0.3838 (4)0.2970 (3)0.1132 (14)
H18A0.35170.31840.33930.170*
H18B0.21730.34060.25630.170*
H18C0.20310.44540.34340.170*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0627 (11)0.0401 (10)0.0515 (11)0.0201 (8)0.0034 (8)0.0085 (8)
N20.0588 (11)0.0468 (10)0.0529 (11)0.0149 (9)0.0028 (8)0.0086 (9)
N30.0554 (10)0.0389 (9)0.0514 (10)0.0155 (8)0.0049 (8)0.0098 (8)
N40.0496 (10)0.0398 (9)0.0569 (11)0.0113 (8)0.0059 (8)0.0129 (8)
O10.172 (2)0.0723 (14)0.0597 (12)0.0446 (15)0.0175 (13)0.0220 (10)
O20.0782 (12)0.0486 (10)0.1034 (16)0.0266 (9)0.0268 (11)0.0098 (10)
S10.0740 (4)0.0492 (4)0.0532 (4)0.0275 (3)0.0076 (3)0.0062 (3)
C10.0403 (10)0.0361 (10)0.0555 (12)0.0073 (8)0.0049 (9)0.0098 (9)
C20.0680 (14)0.0541 (13)0.0526 (13)0.0203 (11)0.0022 (11)0.0106 (11)
C30.0760 (16)0.0634 (16)0.0527 (14)0.0142 (13)0.0024 (12)0.0053 (12)
C40.140 (3)0.0634 (18)0.0710 (19)0.0009 (19)0.0064 (19)0.0020 (15)
C50.235 (6)0.077 (2)0.085 (3)0.015 (3)0.022 (3)0.022 (2)
C60.212 (5)0.102 (3)0.066 (2)0.021 (3)0.007 (3)0.017 (2)
C70.146 (3)0.101 (3)0.0549 (17)0.007 (2)0.0002 (19)0.0093 (17)
C80.0876 (19)0.0748 (18)0.0527 (14)0.0158 (15)0.0034 (13)0.0082 (13)
C90.188 (4)0.087 (2)0.074 (2)0.047 (3)0.019 (2)0.0335 (19)
C100.0453 (11)0.0381 (11)0.0653 (14)0.0105 (9)0.0103 (10)0.0080 (10)
C110.0439 (11)0.0452 (12)0.0758 (16)0.0115 (9)0.0040 (10)0.0185 (11)
C120.0740 (17)0.0731 (18)0.0786 (19)0.0300 (14)0.0008 (14)0.0262 (15)
C130.098 (2)0.109 (3)0.083 (2)0.042 (2)0.0038 (17)0.044 (2)
C140.085 (2)0.095 (2)0.118 (3)0.0436 (19)0.0095 (19)0.062 (2)
C150.0646 (16)0.0599 (16)0.122 (3)0.0255 (13)0.0028 (16)0.0369 (17)
C160.0412 (11)0.0383 (12)0.102 (2)0.0056 (9)0.0084 (12)0.0193 (12)
C170.082 (2)0.0633 (18)0.148 (3)0.0364 (16)0.026 (2)0.026 (2)
O30.1011 (15)0.0707 (13)0.0658 (12)0.0183 (11)0.0032 (10)0.0064 (10)
C180.152 (4)0.103 (3)0.084 (2)0.050 (3)0.014 (2)0.000 (2)
Geometric parameters (Å, º) top
N1—C11.351 (3)C7—H70.9300
N1—N21.370 (3)C9—H9A0.9600
N1—H10.8600C9—H9B0.9600
N2—C21.268 (3)C9—H9C0.9600
N3—C11.335 (3)C10—C111.458 (3)
N3—N41.381 (2)C10—H100.9300
N3—H3A0.8600C11—C121.363 (4)
N4—C101.269 (3)C11—C161.404 (3)
O1—C81.350 (4)C12—C131.386 (4)
O1—C91.419 (4)C12—H120.9300
O2—C161.350 (4)C13—C141.377 (5)
O2—C171.435 (3)C13—H130.9300
S1—C11.672 (2)C14—C151.356 (5)
C2—C31.459 (4)C14—H140.9300
C2—H20.9300C15—C161.385 (4)
C3—C41.382 (4)C15—H150.9300
C3—C81.395 (4)C17—H17A0.9600
C4—C51.379 (5)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C5—C61.378 (6)O3—C181.391 (4)
C5—H50.9300O3—H30.8200
C6—C71.358 (6)C18—H18A0.9600
C6—H60.9300C18—H18B0.9600
C7—C81.383 (4)C18—H18C0.9600
C1—N1—N2119.98 (18)O1—C9—H9C109.5
C1—N1—H1120.0H9A—C9—H9C109.5
N2—N1—H1120.0H9B—C9—H9C109.5
C2—N2—N1116.55 (19)N4—C10—C11122.0 (2)
C1—N3—N4120.89 (19)N4—C10—H10119.0
C1—N3—H3A119.6C11—C10—H10119.0
N4—N3—H3A119.6C12—C11—C16119.1 (2)
C10—N4—N3113.93 (19)C12—C11—C10122.2 (2)
C8—O1—C9117.2 (3)C16—C11—C10118.7 (2)
C16—O2—C17118.8 (3)C11—C12—C13121.2 (3)
N3—C1—N1114.5 (2)C11—C12—H12119.4
N3—C1—S1125.35 (17)C13—C12—H12119.4
N1—C1—S1120.10 (16)C14—C13—C12118.8 (4)
N2—C2—C3120.8 (2)C14—C13—H13120.6
N2—C2—H2119.6C12—C13—H13120.6
C3—C2—H2119.6C15—C14—C13121.4 (3)
C4—C3—C8118.6 (3)C15—C14—H14119.3
C4—C3—C2120.9 (3)C13—C14—H14119.3
C8—C3—C2120.5 (2)C14—C15—C16119.9 (3)
C5—C4—C3120.5 (3)C14—C15—H15120.0
C5—C4—H4119.7C16—C15—H15120.0
C3—C4—H4119.7O2—C16—C15123.9 (3)
C6—C5—C4119.7 (4)O2—C16—C11116.5 (2)
C6—C5—H5120.1C15—C16—C11119.5 (3)
C4—C5—H5120.1O2—C17—H17A109.5
C7—C6—C5120.8 (4)O2—C17—H17B109.5
C7—C6—H6119.6H17A—C17—H17B109.5
C5—C6—H6119.6O2—C17—H17C109.5
C6—C7—C8119.8 (3)H17A—C17—H17C109.5
C6—C7—H7120.1H17B—C17—H17C109.5
C8—C7—H7120.1C18—O3—H3109.5
O1—C8—C7124.6 (3)O3—C18—H18A109.5
O1—C8—C3115.0 (2)O3—C18—H18B109.5
C7—C8—C3120.4 (3)H18A—C18—H18B109.5
O1—C9—H9A109.5O3—C18—H18C109.5
O1—C9—H9B109.5H18A—C18—H18C109.5
H9A—C9—H9B109.5H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···S1i0.822.803.534 (2)150
O3—H3···N4i0.822.363.028 (3)139
N3—H3A···O30.862.383.126 (3)145
N1—H1···S1ii0.862.573.4184 (19)169
N3—H3A···N20.862.212.591 (3)106
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC17H18N4O2S·CH4O
Mr374.46
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7223 (15), 10.232 (2), 12.648 (3)
α, β, γ (°)85.938 (3), 80.796 (3), 79.550 (3)
V3)969.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.25 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.954, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
4769, 3324, 2766
Rint0.024
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.171, 1.01
No. of reflections3324
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···S1i0.822.803.534 (2)150.4
O3—H3···N4i0.822.363.028 (3)138.6
N3—H3A···O30.862.383.126 (3)145.2
N1—H1···S1ii0.862.573.4184 (19)168.7
N3—H3A···N20.862.212.591 (3)106.4
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z.
 

Acknowledgements

The authors gratefully acknowledge the financial support of the Fundamental Research Funds for the Central Universities (grant No. 12CX04091A).

References

First citationBacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, G., Rodriguez-Arguelles, M. C., Rogolino, D., Solinas, C. & Zani, F. (2005). J. Inorg. Biochem. 99, 397–408.  Web of Science CSD CrossRef PubMed CAS
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFang, X.-N., Xu, Y.-P., Guo, X.-F. & Zeng, X.-R. (2006). Acta Cryst. E62, o1052–o1054.  Web of Science CSD CrossRef CAS IUCr Journals
First citationFeng, L., Ji, H., Wang, R., Ge, H. & Li, L. (2011). Acta Cryst. E67, o1514.  Web of Science CSD CrossRef IUCr Journals
First citationLiang, F.-Z. (2003). J. Shandong Normal Univ. (Nat. Sci.), 18, 50–51.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationZhao, X. (2011). Acta Cryst. E67, o2133.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds