Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,*N*'-Diphenyl-9,10-dioxo-9,10-dihydroanthracene-2,7-disulfonamide

Wei-Guan Yuan* and Hong-Ling Zhang

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China Correspondence e-mail: yuanweiguan_1@cwnu.edu.cn

Received 7 June 2013; accepted 23 June 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.059; wR factor = 0.146; data-to-parameter ratio = 13.9.

The title molecule, $C_{26}H_{18}N_2O_6S_2$, has an overall Z-shaped conformation, in which the benzene rings are inclined to the anthraquinone mean plane by 60.60 (9) and 50.66 (13)°. In the crystal, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds link the molecules into layers parallel to the *bc* plane.

Related literature

For applications of sulfonamide derivitives, see: Valeur & Leray (2000); Chen *et al.* (2000); Kuljit & Subodh (2011). For applications of anthraquinone derivitives, see: Lu *et al.* (2006); Liu *et al.* (2011). For details of the synthesis, see: Kuljit & Subodh (2011); Zeng & King (2002). For a related structure, see: Li *et al.* (2009). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} C_{26}H_{18}N_2O_6S_2\\ M_r=518.54\\ \text{Monoclinic, }P2_1/c\\ a=10.247~(4)~\text{\AA}\\ b=6.395~(2)~\text{\AA}\\ c=36.265~(12)~\text{\AA}\\ \beta=104.511~(12)^\circ \end{array}$

 $V = 2300.6 (14) \text{ Å}^3$ Z = 4Mo K\alpha radiation $\mu = 0.28 \text{ mm}^{-1}$ T = 293 K $0.26 \times 0.17 \times 0.14 \text{ mm}$

Data collection

Bruker APEXII CCD

diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{min} = 0.931, T_{max} = 0.962$

Refinement

325 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ \AA}^{-3}$

12233 measured reflections

 $R_{\rm int} = 0.088$

4512 independent reflections

1965 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.86	2.55	3.110 (4)	123
0.86	2.32	2.952 (5)	131
0.93	2.35	3.164 (5)	146
	<i>D</i> -Н 0.86 0.86 0.93	$\begin{array}{c ccc} D-H & H\cdots A \\ \hline 0.86 & 2.55 \\ 0.86 & 2.32 \\ 0.93 & 2.35 \end{array}$	$\begin{array}{c ccccc} D-H & H\cdots A & D\cdots A \\ \hline 0.86 & 2.55 & 3.110 (4) \\ 0.86 & 2.32 & 2.952 (5) \\ 0.93 & 2.35 & 3.164 (5) \end{array}$

Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x + 1, -y + 3, -z + 2.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Scientific Researching Fund Projects of China West Normal University (grant No. 06B003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5417).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, L. P., Yang, L. T., Li, H. W., Gao, Y., Deng, D. Y., Wu, Y. Q. & Ma, L. J. (2000). *Inorg. Chem.* **50**, 10028–0032.
- Kuljit, K. & Subodh, K. (2011). Dalton Trans. 40, 2451-2458.
- Li, H. W., Li, Y., Dang, Y. Q., Ma, L. J., Wu, Y. Q. & Hou, G. F. (2009). Chem. Commun. 29, 4453–4455.
- Liu, Y. L., Sun, Y., Du, J., Lv, X., Zhao, Y., Chen, M. L., Wang, P. & Guo, W. (2011). Org. Biomol. Chem. 9, 432–437.
- Lu, Z. K., Lord, S. J., Wang, H., Moerner, W. E. & Twieg, R. J. (2006). J. Org. Chem. 71, 9651–9657.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Valeur, B. & Leray, I. (2000). Coord Chem. Rev. 205, 3-40.
- Zeng, B. B. & King, S. B. (2002). Synthesis, 16, 2335-2337.

supporting information

Acta Cryst. (2013). E69, o1172 [https://doi.org/10.1107/S1600536813017303] *N,N'-Diphenyl-9,10-dioxo-9,10-dihydroanthracene-2,7-disulfonamide*

Wei-Guan Yuan and Hong-Ling Zhang

S1. Comment

In recent years, sulfonamide and its derivatives attract more attention due to their applications in molecular recognition (Kuljit *et al.*, 2011). They can be used as fluorescent sensors to detect heavy metal ions (Chen *et al.*, 2000) in view of good sensitivity, high selectivity, fast response and convenient observation (Valeur & Leray, 2000). Normally, a fluorescent sensor consists of a receptor for recognition and a fluorophore for signaling the recognition event. Anthraquinone and many of its derivatives are analogous to naphthalene dyes, therefore, they have been extensively explored as fluorescence probes in various chemical and biological systems (Lu *et al.*, 2006; Liu *et al.*, 2011). Herein, we report the synthesis and crystal structure of the title compound, (I), in which the anthraquinone fragment acts as a fluorophore.

In (I) (Fig. 1), the bond lengths and angles are normal (Allen *et al.*, 1987) and correspond well to those observed in the related compound (Li *et al.*, 2009). Two benzene rings are inclined to the anthraquinone mean plane at 60.60 (9)° and 50.66 (13)°, respectively. In the crystal, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to *bc* plane.

S2. Experimental

A mixture of aniline (372 mg, 4 mmol) and triethylamine(8 mmol) in dry dichloroethane(20 ml) was stirred at RT, then, the solution of N,N- bisphenyl- 9,10- dioxo-9,10-dihydro-2,7- anthracenedisulfonyl chloride (977 mg, 2.2 mmol) in dry dichloroethane (30 ml) was added during 5 min, the mixture was stirred at RT for 8 h under nitrogen in air. Then the solvent was removed completely under vacuum and the solid washed with water yielding the title compound (Kuljit *et al.*,2011; Zeng *et al.*,2002). Yellow needlelike single crystals suitable for X-ray diffraction were obtained by volatilizing dichloromethane slowly.

S3. Refinement

H atoms were placed in calculated positions [N—H = 0.86 Å, C—H = 0.93 Å], and refined in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C, N)$.

Figure 1

A view of the molecular structure of (I) with atom numbering. The displacement ellipsoids are drawn at the 30% probability level. H atoms omitted for clarity.

N,N'-Diphenyl-9,10-dioxo-9,10-dihydroanthracene-2,7-disulfonamide

Crystal data	
$C_{26}H_{18}N_2O_6S_2$	F(000) = 1072
$M_r = 518.54$	$D_{\rm x} = 1.49$ / Mg m ⁻⁹
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ A
Hall symbol: -P 2ybc	Cell parameters from 620 reflections
$a = 10.247 (4) \text{\AA}$	$\theta = 2.7 - 17.7^{\circ}$
b = 6.395 (2) Å	$\mu=0.28~\mathrm{mm^{-1}}$
c = 36.265 (12) Å	T = 293 K
$\beta = 104.511 \ (12)^{\circ}$	Needle, yellow
$V = 2300.6 (14) \text{ Å}^3$	$0.26 \times 0.17 \times 0.14 \text{ mm}$
Z = 4	
Data collection	
Bruker APEXII CCD	12233 measured reflections
diffractometer	4512 independent reflections
Radiation source: fine-focus sealed tube	1965 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.088$
φ and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.2^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 12$
(SADABS; Bruker, 2008)	$k = -7 \rightarrow 7$
$T_{\min} = 0.931, T_{\max} = 0.962$	$l = -44 \rightarrow 44$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from

 $wR(F^2) = 0.146$ S = 1.004512 reflections
325 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods

neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.040P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.33$ e Å⁻³ $\Delta\rho_{min} = -0.32$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х v Ζ **S**1 0.79332 (3) 0.0572 (4) 0.58554 (13) 0.18230 (18) S2 0.28393 (12) 1.46829 (17) 0.92991 (3) 0.0563(4)01 0.6506(3)-0.0105(4)0.80672 (8) 0.0677 (9) 02 0.4492 (3) 0.1852 (4) 0.77093 (8) 0.0677 (9) O3 0.3522(3)0.8677 (5) 0.83377 (8) 0.0714 (10) 04 0.7155(3)0.6645(5)0.96336(7)0.0645(9)05 0.2258(3)1.5295 (4) 0.89183 (7) 0.0634(9)06 0.3526(3)1.6176 (4) 0.0720(9)0.95722 (8) N1 0.6729 (4) 0.3019 (5) 0.76842(9)0.0580(10)H1B 0.6322 0.3522 0.7466 0.070* N2 0.1695 (3) 1.3670 (5) 0.94892 (9) 0.0566 (10) H2B 0.1538 1.4248 0.9688 0.068* C1 0.8998 (6) 0.1581 (8) 0.77943 (12) 0.0693 (14) H1A 0.8636 0.0292 0.083* 0.7703 0.1863 (11) C2 1.0385(7) 0.79121 (14) 0.0858 (17) H2A 1.0954 0.0752 0.7896 0.103* C3 1.0928 (6) 0.3734 (12) 0.80505 (14) 0.0867 (18) 0.104* H3A 1.1858 0.3900 0.8129 C4 1.0079(7) 0.5385 (10) 0.80733 (13) 0.0823(16)H4A 0.099* 1.0444 0.6671 0.8165 C5 0.8700 (6) 0.5145 (8) 0.79609 (12) 0.0665 (13) H5A 0.7984 0.080* 0.8138 0.6253 C6 0.8160 (5) 0.3270 (8) 0.78157 (11) 0.0556 (12) C7 0.2840(7) 0.0547 (12) 0.6861 (4) 0.86814 (11) H7A 0.7385 0.1643 0.8693 0.066* C8 0.5946(4)0.3395(7)0.83429 (11) 0.0472 (11) C9 0.5143 (4) 0.5151 (6) 0.83231 (11) 0.0481 (11) H9A 0.4528 0.5501 0.8096 0.058* C10 0.5262(4)0.6392 (6) 0.86460(11) 0.0455(11) C11 0.6200(4)0.5845 (6) 0.89853 (11) 0.0452 (11) C12 0.6987(4)0.4077(7)0.90007 (12) 0.0512(11) H12A 0.7603 0.3719 0.9227 0.061* C13 0.0489(11) 0.6374(4)0.7168(7)0.93335 (12) C14 0.5571 (4) 0.9119 (6) 0.93028 (11) 0.0455 (11) C15 0.4591 (4) 0.9599 (6) 0.89736(11) 0.0438 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C16	0.4378 (4)	0.8243 (7)	0.86281 (11)	0.0502 (11)
C17	0.3778 (4)	1.1325 (7)	0.89652 (11)	0.0503 (11)
H17A	0.3115	1.1640	0.8746	0.060*
C18	0.3949 (4)	1.2593 (6)	0.92850 (11)	0.0478 (11)
C19	0.4951 (4)	1.2139 (7)	0.96133 (11)	0.0551 (12)
H19A	0.5071	1.2998	0.9826	0.066*
C20	0.5760 (4)	1.0420 (7)	0.96214 (11)	0.0538 (12)
H20A	0.6434	1.0121	0.9839	0.065*
C21	0.0947 (4)	1.1849 (7)	0.93340 (12)	0.0488 (11)
C22	0.0754 (5)	1.0319 (8)	0.95845 (12)	0.0642 (13)
H22A	0.1091	1.0515	0.9845	0.077*
C23	0.0068 (5)	0.8506 (8)	0.94520 (17)	0.0824 (16)
H23A	-0.0066	0.7488	0.9622	0.099*
C24	-0.0416 (5)	0.8218 (8)	0.90673 (17)	0.0739 (15)
H24A	-0.0871	0.6993	0.8975	0.089*
C25	-0.0229 (5)	0.9733 (8)	0.88214 (14)	0.0710 (14)
H25A	-0.0551	0.9522	0.8561	0.085*
C26	0.0431 (4)	1.1582 (8)	0.89523 (12)	0.0626 (13)
H26A	0.0521	1.2626	0.8782	0.075*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U ¹²	U ¹³	U ²³
S1	0.0700 (9)	0.0481 (7)	0.0503 (7)	-0.0020 (7)	0.0094 (6)	-0.0015 (6)
S2	0.0659 (8)	0.0510(7)	0.0529 (8)	-0.0088 (7)	0.0166 (6)	-0.0050 (6)
01	0.095 (2)	0.0398 (18)	0.0637 (19)	0.0054 (17)	0.0110 (18)	0.0079 (15)
O2	0.065 (2)	0.061 (2)	0.0660 (19)	-0.0071 (17)	-0.0047 (17)	-0.0067 (16)
O3	0.083 (2)	0.079 (2)	0.0415 (18)	0.0234 (19)	-0.0047 (17)	-0.0046 (16)
O4	0.066 (2)	0.078 (2)	0.0431 (18)	0.0071 (18)	0.0017 (16)	0.0034 (16)
O5	0.081 (2)	0.0580 (19)	0.0484 (18)	0.0018 (17)	0.0117 (17)	0.0043 (15)
O6	0.086 (2)	0.057 (2)	0.066 (2)	-0.0179 (18)	0.0065 (18)	-0.0195 (16)
N1	0.076 (3)	0.061 (2)	0.0359 (19)	0.001 (2)	0.013 (2)	0.0038 (18)
N2	0.063 (2)	0.062 (2)	0.051 (2)	-0.006 (2)	0.027 (2)	-0.0133 (18)
C1	0.087 (4)	0.074 (4)	0.048 (3)	0.012 (3)	0.021 (3)	-0.002(3)
C2	0.088 (5)	0.118 (5)	0.059 (3)	0.035 (4)	0.032 (3)	0.017 (4)
C3	0.071 (4)	0.138 (6)	0.050 (3)	-0.007 (4)	0.014 (3)	0.018 (4)
C4	0.093 (5)	0.099 (5)	0.053 (3)	-0.012 (4)	0.015 (3)	0.006 (3)
C5	0.083 (4)	0.065 (4)	0.054 (3)	0.007 (3)	0.022 (3)	0.001 (3)
C6	0.079 (4)	0.054 (3)	0.035 (2)	0.007 (3)	0.018 (2)	0.001 (2)
C7	0.057 (3)	0.056 (3)	0.051 (3)	-0.001 (2)	0.012 (2)	0.002 (2)
C8	0.048 (3)	0.051 (3)	0.045 (3)	-0.006(2)	0.015 (2)	-0.001(2)
C9	0.047 (3)	0.052 (3)	0.041 (2)	-0.004 (2)	0.003 (2)	0.005 (2)
C10	0.051 (3)	0.049 (3)	0.036 (2)	-0.006 (2)	0.011 (2)	0.004 (2)
C11	0.045 (3)	0.049 (3)	0.041 (3)	-0.009 (2)	0.011 (2)	0.006 (2)
C12	0.048 (3)	0.060 (3)	0.044 (3)	-0.006 (2)	0.008 (2)	0.007 (2)
C13	0.045 (3)	0.057 (3)	0.041 (3)	-0.009 (2)	0.004 (2)	0.008 (2)
C14	0.046 (3)	0.051 (3)	0.037 (2)	-0.011 (2)	0.007 (2)	0.004 (2)
C15	0.052 (3)	0.044 (3)	0.036 (2)	-0.009(2)	0.013 (2)	0.004 (2)

supporting information

C16	0.055 (3)	0.056 (3)	0.038 (2)	-0.001 (2)	0.009 (2)	0.005 (2)	
C17	0.054 (3)	0.056 (3)	0.040 (3)	-0.010 (2)	0.008 (2)	0.005 (2)	
C18	0.050 (3)	0.050(3)	0.044 (3)	-0.011 (2)	0.010 (2)	0.000 (2)	
C19	0.066 (3)	0.058 (3)	0.041 (3)	-0.013 (3)	0.012 (2)	-0.009(2)	
C20	0.053 (3)	0.064 (3)	0.039 (3)	-0.007 (3)	0.001 (2)	0.000 (2)	
C21	0.045 (3)	0.051 (3)	0.051 (3)	-0.001 (2)	0.013 (2)	-0.002 (2)	
C22	0.064 (3)	0.077 (4)	0.051 (3)	-0.002 (3)	0.012 (3)	0.000 (3)	
C23	0.085 (4)	0.072 (4)	0.095 (4)	-0.011 (3)	0.032 (4)	0.017 (3)	
C24	0.065 (4)	0.060 (3)	0.100 (4)	-0.012 (3)	0.028 (3)	-0.005 (3)	
C25	0.063 (3)	0.078 (4)	0.073 (3)	-0.010 (3)	0.019 (3)	-0.014 (3)	
C26	0.064 (3)	0.070 (3)	0.052 (3)	-0.008 (3)	0.010 (3)	-0.002 (3)	

Geometric parameters (Å, °)

<u>S1—01</u>	1.428 (3)	C9—C10	1.394 (5)
S1—O2	1.430 (3)	С9—Н9А	0.9300
S1—N1	1.615 (4)	C10—C11	1.402 (5)
S1—C8	1.777 (4)	C10—C16	1.482 (6)
S2—O5	1.415 (3)	C11—C12	1.382 (5)
S2—O6	1.428 (3)	C11—C13	1.493 (5)
S2—N2	1.636 (3)	C12—H12A	0.9300
S2—C18	1.764 (4)	C13—C14	1.483 (5)
O3—C16	1.222 (4)	C14—C15	1.388 (5)
O4—C13	1.225 (4)	C14—C20	1.398 (5)
N1—C6	1.433 (5)	C15—C17	1.379 (5)
N1—H1B	0.8600	C15—C16	1.494 (5)
N2-C21	1.429 (5)	C17—C18	1.390 (5)
N2—H2B	0.8600	C17—H17A	0.9300
C1—C2	1.390 (7)	C18—C19	1.394 (5)
C1—C6	1.394 (6)	C19—C20	1.372 (5)
C1—H1A	0.9300	C19—H19A	0.9300
C2—C3	1.361 (7)	C20—H20A	0.9300
C2—H2A	0.9300	C21—C26	1.363 (5)
C3—C4	1.383 (7)	C21—C22	1.383 (6)
С3—НЗА	0.9300	C22—C23	1.379 (6)
C4—C5	1.378 (6)	C22—H22A	0.9300
C4—H4A	0.9300	C23—C24	1.371 (6)
C5—C6	1.370 (6)	C23—H23A	0.9300
С5—Н5А	0.9300	C24—C25	1.362 (6)
C7—C12	1.382 (5)	C24—H24A	0.9300
C7—C8	1.391 (5)	C25—C26	1.386 (6)
С7—Н7А	0.9300	C25—H25A	0.9300
С8—С9	1.384 (5)	C26—H26A	0.9300
O1—S1—O2	120.75 (19)	C12—C11—C10	120.3 (4)
01—S1—N1	108.8 (2)	C12—C11—C13	119.0 (4)
O2—S1—N1	106.02 (19)	C10-C11-C13	120.7 (4)
O1—S1—C8	106.36 (19)	C11—C12—C7	120.3 (4)

O2—S1—C8	107.9 (2)	C11—C12—H12A	119.9
N1—S1—C8	106.22 (19)	C7—C12—H12A	119.9
O5—S2—O6	120.37 (19)	O4—C13—C14	121.6 (4)
O5—S2—N2	110.50 (18)	O4—C13—C11	120.6 (4)
O6—S2—N2	104.67 (19)	C14—C13—C11	117.8 (4)
O5—S2—C18	107.33 (19)	C15—C14—C20	120.0 (4)
O6—S2—C18	108.5 (2)	C15—C14—C13	121.3 (4)
N2—S2—C18	104.34 (18)	C20—C14—C13	118.7 (4)
C6—N1—S1	122.1 (3)	C17 - C15 - C14	120.0 (4)
C6—N1—H1B	119.0	C17—C15—C16	119.0 (4)
S1—N1—H1B	119.0	C14-C15-C16	121.0(4)
$C_{21} = N_{2} = S_{2}$	121.8 (3)	03-C16-C10	121.0(1) 121.2(4)
C_{21} N_{2} H_{2B}	119.1	03-C16-C15	121.2(1) 1209(4)
S2N2H2B	119.1	C10-C16-C15	120.9(1) 1179(4)
C_{2} C_{1} C_{6}	118.6 (5)	C_{15} C_{17} C_{18}	1200(4)
$C_2 = C_1 = H_1 A$	120.7	$C_{15} - C_{17} - H_{17A}$	120.0 (4)
C6-C1-H1A	120.7	C18 - C17 - H17A	120.0
$C_3 = C_2 = C_1$	120.7	$C_{10} = C_{17} = M_{17} M_{17}$	120.0 120.2(4)
$C_3 = C_2 = C_1$	110.3	C17 C18 S2	120.2(4) 121.2(3)
$C_1 = C_2 = H_2 \Lambda$	119.5	C19 C18 S2	121.2(3) 1184(3)
$C_1 = C_2 = M_2 A$	119.5	$C_{19} = C_{18} = S_2$	110.4(3) 110.8(4)
$C_2 = C_3 = C_4$	120.4	$C_{20} = C_{10} = C_{10}$	119.0 (+)
$C_2 = C_3 = H_3 \Lambda$	120.4	C18 C19 H19A	120.1
C_{4}	120.4	$C_{10} = C_{10} = C_{14}$	120.1 120.1(4)
$C_{5} = C_{4} = C_{5}$	110.6	$C_{19} = C_{20} = C_{14}$	120.1 (4)
$C_3 = C_4 = H_4 \Lambda$	119.0	$C_{14} = C_{20} = H_{20A}$	120.0
C_{5}	119.0	$C_{14} = C_{20} = H_{20} R_{12}$	120.0 110.7 (A)
C_{0}	119.8 (3)	$C_{20} = C_{21} = C_{22}$	119.7(4) 122.4(4)
C_{4} C_{5} H_{5}	120.1	$C_{20} = C_{21} = N_2$	122.4(4)
C_{4}	120.1	$C_{22} = C_{21} = N_2$	117.9(4) 120.7(4)
$C_{5} = C_{6} = C_{1}$	120.5(5)	$C_{23} = C_{22} = C_{21}$	120.7 (4)
$C_1 = C_6 = N_1$	120.3(5)	$C_{23} = C_{22} = H_{22A}$	119.7
$C_{1} = C_{0} = N_{1}$	119.2(3) 119.6(4)	$C_{21} = C_{22} = H_{22R}$	119.7 110 A (5)
$C_{12} = C_7 = C_8$	119.0 (4)	$C_{24} = C_{23} = C_{22}$	119.4 (5)
$C_{12} - C_{7} - H_{7A}$	120.2	$C_{24} = C_{23} = H_{23} A$	120.3
C_{0} C_{8} C_{7}	120.2 120.9(A)	$C_{22} = C_{23} = H_{23} = H$	120.3 110.8(5)
$C_{9} = C_{8} = C_{7}$	120.9(4) 120.7(3)	$C_{25} = C_{24} = C_{25}$	119.8 (5)
$C_{7} = C_{8} = S_{1}$	120.7(3) 118.4(3)	$C_{23} = C_{24} = H_{24A}$	120.1
$C_{1} = C_{2} = C_{1}$	110.4(3) 110.5(4)	$C_{23} = C_{24} = H_{24} + K$	120.1 121.3(5)
$C_8 = C_9 = C_{10}$	119.3 (4)	$C_{24} = C_{25} = C_{26}$	121.5 (5)
$C_{10} = C_{2} = H_{20}$	120.3	$C_{24} = C_{25} = H_{25} A$	119.4
$C_{10} = C_{10} = C_{11}$	120.3 110 5 (A)	$C_{20} = C_{20} = H_{20} = H$	119.4
$C_{2} = C_{10} = C_{10}$	119.5(4)	$C_{21} = C_{20} = C_{23}$	119.1 (5)
$C_{2} = C_{10} = C_{10}$	119.0(4)	$C_{21} = C_{20} = H_{20}$	120.4
	121.0 (7)	C25-C20-1120A	120.4
01—S1—N1—C6	-47.7 (4)	C11—C13—C14—C15	6.4 (6)
O2—S1—N1—C6	-179.0 (3)	O4—C13—C14—C20	2.6 (6)
C8—S1—N1—C6	66.5 (4)	C11—C13—C14—C20	-177.5 (4)

O5—S2—N2—C21	60.2 (3)	C20—C14—C15—C17	-1.9(6)
O6—S2—N2—C21	-168.9 (3)	C13—C14—C15—C17	174.1 (4)
C18—S2—N2—C21	-54.9 (3)	C20-C14-C15-C16	179.5 (4)
C6—C1—C2—C3	0.8 (7)	C13—C14—C15—C16	-4.5 (6)
C1—C2—C3—C4	-0.1 (8)	C9—C10—C16—O3	1.8 (6)
C2—C3—C4—C5	0.6 (8)	C11—C10—C16—O3	-177.0 (4)
C3—C4—C5—C6	-1.7 (7)	C9—C10—C16—C15	-176.6 (4)
C4—C5—C6—C1	2.4 (7)	C11—C10—C16—C15	4.7 (6)
C4—C5—C6—N1	-177.6 (4)	C17—C15—C16—O3	2.0 (6)
C2-C1-C6-C5	-1.9 (7)	C14—C15—C16—O3	-179.4 (4)
C2-C1-C6-N1	178.1 (4)	C17—C15—C16—C10	-179.7 (4)
S1—N1—C6—C5	-102.5 (4)	C14-C15-C16-C10	-1.1 (6)
S1—N1—C6—C1	77.5 (5)	C14—C15—C17—C18	0.6 (6)
C12—C7—C8—C9	-1.1 (6)	C16—C15—C17—C18	179.3 (4)
C12—C7—C8—S1	177.7 (3)	C15—C17—C18—C19	0.7 (6)
O1—S1—C8—C9	-164.6 (3)	C15—C17—C18—S2	-174.6 (3)
O2—S1—C8—C9	-33.8 (4)	O5—S2—C18—C17	-24.7 (4)
N1—S1—C8—C9	79.5 (4)	O6—S2—C18—C17	-156.2 (3)
O1—S1—C8—C7	16.5 (4)	N2—S2—C18—C17	92.6 (4)
O2—S1—C8—C7	147.4 (3)	O5—S2—C18—C19	160.0 (3)
N1—S1—C8—C7	-99.3 (3)	O6—S2—C18—C19	28.4 (4)
C7—C8—C9—C10	0.7 (6)	N2—S2—C18—C19	-82.7 (3)
S1-C8-C9-C10	-178.1 (3)	C17—C18—C19—C20	-0.7 (6)
C8—C9—C10—C11	0.3 (6)	S2-C18-C19-C20	174.7 (3)
C8—C9—C10—C16	-178.4 (4)	C18—C19—C20—C14	-0.6 (6)
C9—C10—C11—C12	-0.8 (6)	C15-C14-C20-C19	1.9 (6)
C16—C10—C11—C12	177.9 (4)	C13—C14—C20—C19	-174.2 (4)
C9—C10—C11—C13	178.6 (4)	S2—N2—C21—C26	-43.2 (5)
C16—C10—C11—C13	-2.7 (6)	S2—N2—C21—C22	136.7 (3)
C10—C11—C12—C7	0.3 (6)	C26—C21—C22—C23	1.3 (7)
C13—C11—C12—C7	-179.1 (4)	N2-C21-C22-C23	-178.6 (4)
C8—C7—C12—C11	0.6 (6)	C21—C22—C23—C24	0.6 (7)
C12-C11-C13-O4	-3.5 (6)	C22—C23—C24—C25	-0.8 (8)
C10-C11-C13-O4	177.2 (4)	C23—C24—C25—C26	-0.7 (8)
C12-C11-C13-C14	176.6 (4)	C22—C21—C26—C25	-2.8 (7)
C10-C11-C13-C14	-2.8 (6)	N2-C21-C26-C25	177.0 (4)
O4—C13—C14—C15	-173.5 (4)	C24—C25—C26—C21	2.6 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2 <i>B</i> ···O4 ⁱ	0.86	2.55	3.110 (4)	123
N1— $H1B$ ···O2 ⁱⁱ	0.86	2.32	2.952 (5)	131
С19—Н19А…Об ^{ііі}	0.93	2.35	3.164 (5)	146

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+2; (ii) -*x*+1, *y*+1/2, -*z*+3/2; (iii) -*x*+1, -*y*+3, -*z*+2.