organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Meth­­oxy­phen­yl)-4,5-di­methyl-2-phenyl-1H-imidazole

aDepartment of Physics, Seethalakshmi Ramaswami College (Autonomous), Tiruchirappalli 620 002, India, and bDepartment of Chemistry, S.K.P. Engineering College, Thiruvanamalai 606 611, India
*Correspondence e-mail: raghema2000@yahoo.co.in

(Received 8 June 2013; accepted 19 June 2013; online 26 June 2013)

In the title compound, C18H18N2O, the imidazole ring makes dihedral angles of 68.26 (7) and 22.45 (9)° with the meth­oxy­phenyl and phenyl rings, respectively. The dihedral angle between the meth­oxy­phenyl and phenyl ring is 71.86 (7)°. In the crystal, weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules into columns propagated in [101].

Related literature

For related structures, see: Gayathri et al. (2010[Gayathri, P., Jayabharathi, J., Srinivasan, N., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o1703.]); Rosepriya et al. (2011[Rosepriya, S., Thiruvalluvar, A., Jayabharathi, J., Srinivasan, N., Butcher, R. J., Jasinski, J. P. & Golen, J. A. (2011). Acta Cryst. E67, o1065.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2O

  • Mr = 278.34

  • Triclinic, [P \overline 1]

  • a = 8.0199 (1) Å

  • b = 9.4807 (1) Å

  • c = 10.4971 (2) Å

  • α = 108.339 (1)°

  • β = 94.910 (1)°

  • γ = 90.535 (1)°

  • V = 754.27 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.977

  • 14252 measured reflections

  • 2644 independent reflections

  • 2159 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.148

  • S = 1.04

  • 2644 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.96 2.57 3.316 (3) 135
C7—H7⋯N2ii 0.93 2.58 3.493 (2) 168
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In a continuation of structural studies of 4,5-dimethyl-1H-imidazole derivatives (Gayathri et al., 2010; Rosepriya et al., 2011), herewith we present the title compound, (I).

In (I) (Fig. 1), the imidazole ring is essentially planar [maximum deviation of 0.0036 (11) Å for N2 and -0.0036 (11) Å N1]. The imidazole ring makes dihedral angle of 68.26 (7)° and 22.45 (9)° with the methoxyphenyl (C6–C11) and phenyl (C13–C18) rings, respectively. The dihedral angle between the methoxyphenyl and phenyl rings is 71.86 (7)°.

The crystal structure is stabilized by weak C—H···O and C—H···N intermolecular interactions (Table 1). The C—H···O interactions link pairs of molecules across centres of inversion to give the ring motif R(16) (Bernstein et al., 1995). Atom C7 acts as a donor for a weak intermolecular C—H···N interaction via H7 with the nitrogen atom in the imidazole moiety, thus forming extended chains with a graph set motif C(6) (Bernstein et al., 1995).

Related literature top

For related structures, see: Gayathri et al. (2010); Rosepriya et al. (2011). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

To pure butane-2,3-dione (1.48 g, 15 mmol) in ethanol (10 ml), m-methoxy aniline (1.5 g, 15 mmol), ammonium acetate (1.15 g, 15 mmol) and benzaldehyde (1.5 g, 15 mmol) was added about 1 h by maintaining the temperature at 333 K. The reaction mixture was refluxed for 7 days and extracted with dichloromethane. The solid separated was purified by column chromatography using hexane: ethyl acetate as the eluent. Yield: 1.91 g (46%).

Refinement top

The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. All remaining H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

In a continuation of structural studies of 4,5-dimethyl-1H-imidazole derivatives (Gayathri et al., 2010; Rosepriya et al., 2011), herewith we present the title compound, (I).

In (I) (Fig. 1), the imidazole ring is essentially planar [maximum deviation of 0.0036 (11) Å for N2 and -0.0036 (11) Å N1]. The imidazole ring makes dihedral angle of 68.26 (7)° and 22.45 (9)° with the methoxyphenyl (C6–C11) and phenyl (C13–C18) rings, respectively. The dihedral angle between the methoxyphenyl and phenyl rings is 71.86 (7)°.

The crystal structure is stabilized by weak C—H···O and C—H···N intermolecular interactions (Table 1). The C—H···O interactions link pairs of molecules across centres of inversion to give the ring motif R(16) (Bernstein et al., 1995). Atom C7 acts as a donor for a weak intermolecular C—H···N interaction via H7 with the nitrogen atom in the imidazole moiety, thus forming extended chains with a graph set motif C(6) (Bernstein et al., 1995).

For related structures, see: Gayathri et al. (2010); Rosepriya et al. (2011). For graph-set motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound,showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.
1-(3-Methoxyphenyl)-4,5-dimethyl-2-phenyl-1H-imidazole top
Crystal data top
C18H18N2OZ = 2
Mr = 278.34F(000) = 296
Triclinic, P1Dx = 1.226 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0199 (1) ÅCell parameters from 2644 reflections
b = 9.4807 (1) Åθ = 2.3–30.6°
c = 10.4971 (2) ŵ = 0.08 mm1
α = 108.339 (1)°T = 293 K
β = 94.910 (1)°Block, colourless
γ = 90.535 (1)°0.35 × 0.30 × 0.30 mm
V = 754.27 (2) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2644 independent reflections
Radiation source: fine-focus sealed tube2159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and φ scanθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.974, Tmax = 0.977k = 1111
14252 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.2805P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2644 reflectionsΔρmax = 0.33 e Å3
191 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (7)
Crystal data top
C18H18N2Oγ = 90.535 (1)°
Mr = 278.34V = 754.27 (2) Å3
Triclinic, P1Z = 2
a = 8.0199 (1) ÅMo Kα radiation
b = 9.4807 (1) ŵ = 0.08 mm1
c = 10.4971 (2) ÅT = 293 K
α = 108.339 (1)°0.35 × 0.30 × 0.30 mm
β = 94.910 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2644 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2159 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.977Rint = 0.021
14252 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
2644 reflectionsΔρmin = 0.22 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7362 (2)0.4690 (2)0.02515 (17)0.0442 (4)
C20.7291 (3)0.7075 (2)0.05116 (19)0.0521 (5)
C30.7842 (3)0.6639 (2)0.15818 (19)0.0513 (5)
C40.6975 (4)0.8605 (2)0.0466 (3)0.0792 (7)
H4A0.65940.85610.04380.119*
H4B0.79930.92050.07510.119*
H4C0.61350.90360.10570.119*
C50.8313 (3)0.7516 (3)0.3018 (2)0.0713 (7)
H5A0.86540.68560.35140.107*
H5B0.73680.80530.33930.107*
H5C0.92220.82060.30720.107*
C60.8135 (2)0.4174 (2)0.19308 (17)0.0440 (4)
C70.6791 (2)0.3354 (2)0.21018 (19)0.0500 (5)
H70.57310.34080.16890.060*
C80.7059 (3)0.2451 (2)0.2900 (2)0.0569 (5)
H80.61700.18790.30150.068*
C90.8613 (3)0.2385 (2)0.3528 (2)0.0557 (5)
H90.87730.17700.40610.067*
C100.9949 (2)0.3234 (2)0.33671 (17)0.0483 (5)
C110.9717 (2)0.4125 (2)0.25552 (17)0.0466 (5)
H111.06100.46850.24290.056*
C121.2812 (3)0.4015 (3)0.3979 (2)0.0701 (6)
H12A1.37810.38000.44790.105*
H12B1.25530.50400.43650.105*
H12C1.30370.38300.30580.105*
C130.7294 (2)0.3179 (2)0.12117 (18)0.0482 (5)
C140.8223 (3)0.2026 (2)0.1019 (2)0.0621 (6)
H140.88950.21750.02170.075*
C150.8159 (3)0.0654 (3)0.2010 (3)0.0743 (7)
H150.87780.01140.18640.089*
C160.7189 (4)0.0416 (3)0.3206 (3)0.0770 (7)
H160.71570.05050.38720.092*
C170.6270 (3)0.1548 (3)0.3408 (2)0.0765 (7)
H170.56170.13950.42190.092*
C180.6304 (3)0.2911 (2)0.2422 (2)0.0611 (6)
H180.56540.36630.25680.073*
N10.78868 (18)0.51065 (17)0.10977 (14)0.0450 (4)
N20.70075 (19)0.58661 (17)0.06211 (15)0.0489 (4)
O11.14352 (18)0.30952 (17)0.40312 (15)0.0643 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0460 (9)0.0516 (11)0.0371 (9)0.0035 (7)0.0034 (7)0.0172 (8)
C20.0646 (12)0.0465 (11)0.0461 (11)0.0015 (8)0.0005 (8)0.0172 (9)
C30.0627 (12)0.0481 (11)0.0416 (10)0.0036 (8)0.0016 (8)0.0140 (8)
C40.119 (2)0.0510 (13)0.0667 (15)0.0024 (13)0.0097 (14)0.0222 (11)
C50.1036 (18)0.0594 (13)0.0453 (12)0.0065 (12)0.0068 (11)0.0125 (10)
C60.0527 (10)0.0467 (10)0.0339 (9)0.0052 (8)0.0062 (7)0.0141 (8)
C70.0503 (10)0.0528 (11)0.0474 (10)0.0035 (8)0.0058 (8)0.0163 (9)
C80.0627 (12)0.0527 (12)0.0594 (12)0.0002 (9)0.0132 (9)0.0217 (10)
C90.0733 (13)0.0490 (11)0.0520 (11)0.0099 (9)0.0110 (9)0.0246 (9)
C100.0579 (11)0.0516 (11)0.0357 (9)0.0134 (8)0.0049 (8)0.0136 (8)
C110.0499 (10)0.0529 (11)0.0395 (9)0.0028 (8)0.0061 (7)0.0175 (8)
C120.0587 (13)0.0918 (17)0.0619 (14)0.0079 (11)0.0043 (10)0.0295 (13)
C130.0544 (10)0.0507 (11)0.0417 (10)0.0035 (8)0.0101 (8)0.0162 (9)
C140.0744 (14)0.0645 (14)0.0477 (11)0.0183 (11)0.0104 (10)0.0166 (10)
C150.0971 (18)0.0581 (14)0.0686 (15)0.0237 (12)0.0217 (13)0.0173 (12)
C160.1025 (19)0.0565 (14)0.0621 (15)0.0029 (12)0.0126 (13)0.0031 (11)
C170.0965 (18)0.0652 (15)0.0556 (14)0.0038 (13)0.0093 (12)0.0061 (11)
C180.0733 (14)0.0555 (12)0.0511 (12)0.0024 (10)0.0042 (10)0.0147 (10)
N10.0508 (9)0.0488 (9)0.0371 (8)0.0020 (6)0.0013 (6)0.0165 (7)
N20.0566 (9)0.0512 (9)0.0410 (8)0.0011 (7)0.0000 (7)0.0189 (7)
O10.0634 (9)0.0770 (10)0.0610 (9)0.0117 (7)0.0025 (7)0.0360 (8)
Geometric parameters (Å, º) top
C1—N21.317 (2)C9—C101.386 (3)
C1—N11.372 (2)C9—H90.9300
C1—C131.467 (3)C10—O11.358 (2)
C2—C31.356 (3)C10—C111.380 (3)
C2—N21.368 (2)C11—H110.9300
C2—C41.490 (3)C12—O11.416 (3)
C3—N11.382 (2)C12—H12A0.9600
C3—C51.488 (3)C12—H12B0.9600
C4—H4A0.9600C12—H12C0.9600
C4—H4B0.9600C13—C141.386 (3)
C4—H4C0.9600C13—C181.389 (3)
C5—H5A0.9600C14—C151.383 (3)
C5—H5B0.9600C14—H140.9300
C5—H5C0.9600C15—C161.373 (4)
C6—C71.380 (3)C15—H150.9300
C6—C111.385 (2)C16—C171.368 (4)
C6—N11.431 (2)C16—H160.9300
C7—C81.380 (3)C17—C181.377 (3)
C7—H70.9300C17—H170.9300
C8—C91.371 (3)C18—H180.9300
C8—H80.9300
N2—C1—N1110.51 (16)O1—C10—C9115.68 (17)
N2—C1—C13122.63 (16)C11—C10—C9119.90 (17)
N1—C1—C13126.73 (16)C10—C11—C6119.00 (17)
C3—C2—N2110.20 (17)C10—C11—H11120.5
C3—C2—C4128.78 (19)C6—C11—H11120.5
N2—C2—C4121.02 (17)O1—C12—H12A109.5
C2—C3—N1105.96 (16)O1—C12—H12B109.5
C2—C3—C5130.95 (19)H12A—C12—H12B109.5
N1—C3—C5123.08 (17)O1—C12—H12C109.5
C2—C4—H4A109.5H12A—C12—H12C109.5
C2—C4—H4B109.5H12B—C12—H12C109.5
H4A—C4—H4B109.5C14—C13—C18117.98 (19)
C2—C4—H4C109.5C14—C13—C1124.16 (18)
H4A—C4—H4C109.5C18—C13—C1117.77 (17)
H4B—C4—H4C109.5C15—C14—C13120.5 (2)
C3—C5—H5A109.5C15—C14—H14119.7
C3—C5—H5B109.5C13—C14—H14119.7
H5A—C5—H5B109.5C16—C15—C14120.6 (2)
C3—C5—H5C109.5C16—C15—H15119.7
H5A—C5—H5C109.5C14—C15—H15119.7
H5B—C5—H5C109.5C17—C16—C15119.3 (2)
C7—C6—C11121.60 (17)C17—C16—H16120.3
C7—C6—N1119.22 (16)C15—C16—H16120.3
C11—C6—N1119.18 (16)C16—C17—C18120.6 (2)
C6—C7—C8118.36 (18)C16—C17—H17119.7
C6—C7—H7120.8C18—C17—H17119.7
C8—C7—H7120.8C17—C18—C13120.9 (2)
C9—C8—C7121.02 (19)C17—C18—H18119.5
C9—C8—H8119.5C13—C18—H18119.5
C7—C8—H8119.5C1—N1—C3106.80 (15)
C8—C9—C10120.11 (18)C1—N1—C6127.92 (15)
C8—C9—H9119.9C3—N1—C6124.33 (15)
C10—C9—H9119.9C1—N2—C2106.53 (15)
O1—C10—C11124.41 (18)C10—O1—C12117.98 (16)
N2—C2—C3—N10.6 (2)C15—C16—C17—C180.4 (4)
C4—C2—C3—N1178.6 (2)C16—C17—C18—C131.3 (4)
N2—C2—C3—C5179.7 (2)C14—C13—C18—C171.1 (3)
C4—C2—C3—C50.5 (4)C1—C13—C18—C17175.5 (2)
C11—C6—C7—C81.0 (3)N2—C1—N1—C30.2 (2)
N1—C6—C7—C8179.48 (16)C13—C1—N1—C3176.15 (17)
C6—C7—C8—C91.0 (3)N2—C1—N1—C6169.31 (16)
C7—C8—C9—C100.1 (3)C13—C1—N1—C614.8 (3)
C8—C9—C10—O1179.81 (17)C2—C3—N1—C10.2 (2)
C8—C9—C10—C111.2 (3)C5—C3—N1—C1179.5 (2)
O1—C10—C11—C6179.95 (16)C2—C3—N1—C6169.35 (17)
C9—C10—C11—C61.1 (3)C5—C3—N1—C69.9 (3)
C7—C6—C11—C100.0 (3)C7—C6—N1—C161.6 (2)
N1—C6—C11—C10179.45 (15)C11—C6—N1—C1118.9 (2)
N2—C1—C13—C14153.96 (19)C7—C6—N1—C3105.7 (2)
N1—C1—C13—C1421.5 (3)C11—C6—N1—C373.8 (2)
N2—C1—C13—C1822.4 (3)N1—C1—N2—C20.6 (2)
N1—C1—C13—C18162.10 (19)C13—C1—N2—C2176.70 (16)
C18—C13—C14—C150.1 (3)C3—C2—N2—C10.7 (2)
C1—C13—C14—C15176.29 (19)C4—C2—N2—C1178.6 (2)
C13—C14—C15—C160.7 (4)C11—C10—O1—C125.4 (3)
C14—C15—C16—C170.6 (4)C9—C10—O1—C12175.63 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.962.573.316 (3)135
C7—H7···N2ii0.932.583.493 (2)168
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H18N2O
Mr278.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0199 (1), 9.4807 (1), 10.4971 (2)
α, β, γ (°)108.339 (1), 94.910 (1), 90.535 (1)
V3)754.27 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.974, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
14252, 2644, 2159
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.148, 1.04
No. of reflections2644
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.22

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.962.573.316 (3)135
C7—H7···N2ii0.932.583.493 (2)168
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

The authors are grateful to the SAIF, IIT Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGayathri, P., Jayabharathi, J., Srinivasan, N., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o1703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRosepriya, S., Thiruvalluvar, A., Jayabharathi, J., Srinivasan, N., Butcher, R. J., Jasinski, J. P. & Golen, J. A. (2011). Acta Cryst. E67, o1065.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds