organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-1,3-bis­­[(1,3-dioxolan-2-yl)meth­yl]-1H-imidazo[4,5-b]pyridin-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed, Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, cUSR 3290 Miniaturisation pour l'analyse, la synthèse et la protéomique, 59655 Villeneuve d'Ascq Cedex, Université Lille 1, France, dLaboratoire de Chimie Organique Hétérocyclique,URAC 21, Pôle de, compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batouta, Rabat, Morocco, and eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: amal_haoudi@yahoo.fr

(Received 14 May 2013; accepted 27 May 2013; online 8 June 2013)

In the title compound, C14H16BrN3O5, the N atoms adjacent to the carbonyl group in the five-membered ring are substituted by (1,3-dioxolan-2-yl)methyl groups. The fused ring system is essentially planar, with the largest deviation from the mean plane being 0.014 (2) Å for the C atom bearing the Br atom. The first oxolane ring, attached on the side of the N atom belonging to the pyridine ring, has an envelope conformation with one of the O atoms as the flap, whereas the second oxolane ring displays a twisted boat conformation. The two oxolane rings display envelope and twisted boat conformations. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, building chains parallel to the a-axis direction.

Related literature

For the biological activity of imidazo­pyridine derivatives, see: Temple et al. (1987[Temple, J. C., Rose, J. D., Comber, R. N. & Rener, G. A. (1987). J. Med. Chem. 30, 1746-1751.]); Barraclough et al. (1990[Barraclough, P., et al. (1990). J. Med. Chem. 33, 2231-2239.]); Janssens et al. (1985[Janssens, F., Torremans, J., Janssen, M., Stokbroekx, R. A., Luyckx, M. & Janssen, P. A. J. (1985). J. Med. Chem. 28, 1943-1947.]); Liu et al. (2008[Liu, L., Xu, P., Zhou, L. & Lei, P. S. (2008). Chin. Chem. Lett. 19, 1-4.]); Bavetsias et al. (2010[Bavetsias, V., Large, J. M., Sun, C., Bouloc, N., Kosmopoulou, M., Matteucci, M., Wilsher, N. E., Martins, V., Reynisson, J., Atrash, B., Faisal, A., Urban, F., Valenti, M. & Brandon, A. H. (2010). J. Med. Chem. 53, 5213-5228.]); Coates et al. (1993[Coates, W. J., Connolly, B., Dhanak, D., Flynn, S. T. & Worby, A. (1993). J. Med. Chem. 36, 1387-1392.]); For the chemistry of synthetic dyes, see: Ryabukhin et al. (2006[Ryabukhin, S. V., Plaskon, A. S., Volochnyuk, D. M. & Tolmachev, A. A. (2006). Synthesis, 21, 3715-3726.]); Schiffmann et al. (2006[Schiffmann, R., Neugebauer, A. & Klein, C. D. (2006). J. Med. Chem. 49, 511-522.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16BrN3O5

  • Mr = 386.21

  • Monoclinic, P 21 /n

  • a = 5.1144 (1) Å

  • b = 17.8029 (4) Å

  • c = 16.5365 (5) Å

  • β = 97.009 (2)°

  • V = 1494.42 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.78 mm−1

  • T = 296 K

  • 0.15 × 0.07 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.674, Tmax = 0.936

  • 13392 measured reflections

  • 3421 independent reflections

  • 2632 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.089

  • S = 1.02

  • 3421 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O2i 0.97 2.36 3.291 (4) 160
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Substituted imidazopyridines and structurally related compounds are of pharmacological and therapeutical interest. They have been tested for their potential as anticancer (Temple et al., 1987), inotropic (Barraclough et al., 1990), selective antihistamine (H1) agents (Janssens et al., 1985) and antibacterial activity (Liu et al., 2008). Imidazo[4,5-b]pyridine derivatives were also reported as Aurora kinases (Bavetsias et al., 2010), and cyclic PDE inhibitors (Coates et al., 1993).The preparation of these compounds is usually straightforward, and a number of synthetic methods are already available (Ryabukhin et al., 2006; Schiffmann et al., 2006). In this letter, we report the synthesis of 1,3-bis(methyl-1,3-dioxolane)-6- bromo-1,3-dihydroimidazo[4,5-b]pyridin-2-one via the reaction between 6- bromo-1,3-dihydro-imidazo[4,5-b]pyridin-2-one and 2-chloromethyl-1,3- dioxolane in DMF using K2CO3 as base (scheme 1).

The molecule of title compound, 3-benzyl-6-bromo-1,3-dihydro-imidazo [4,5-b]pyridin-2-one, build up from two fused five- and six-membered rings liked on opposite sides to (1,3-dioxolan-2-yl)methyl groups as shown in Fig. 1. The fused rings system (N1N2N3 C1 to C6) is essentially planar with the largest deviation from the mean plane being 0.014 (2) A° at C1 atom. The five-membered ring (O2O3C8C9C10) adopts on C8–O3 a twisted conformation, whereas the other (O4O5C12C13C14) an envelope conformation (on O5), as indicated by the total puckering amplitudes Q2 = 0.355 (3) Å; and Q2 = 0.234 (3) Å and spherical polar angles φ2 = 238.6 (5)° and φ2 = 65.1 (7)°, respectively. The dihedral angles between the fused imidazole and pyridine rings and the two oxolane cycles (O2O3C8C9C10) and (O4O5C12C13C14) are of 82.34 (13) ° and 38.15 (13) °, respectively.

In the crystal, the molecules are linked by C10–H10···O2 hydrogen bond in the way to build a chain parallel to a axis as shown in Fig. 2 and Table 2.

Related literature top

For the biological activity of imidazopyridine derivatives, see: Temple et al. (1987); Barraclough et al. (1990); Janssens et al. (1985); Liu et al. (2008); Bavetsias et al. (2010); Coates et al. (1993); For the chemistry of synthetic dyes, see: Ryabukhin et al. (2006); Schiffmann et al. (2006).

Experimental top

To a stirred solution of 6-bromo-1,3-dihydro-imidazo[4,5-b]pyridin-2-one (0.5 g; 2.33 mmol), K2CO3 (1.29 g; 9.34 mmol), and tetra n-butylammonium bromide (0.07 g; 2.37 10 -4 mol) in DMF, 2-chloromethyl-1,3-dioxolane (5.84 mmol) was added dropwise. Stirring was continued at room temperature for 24 h. After completion of reaction (monitored by TLC), the salt was filtered and the solvent was removed under reduced pressure. The resulting residue was purified by column chromatography on silica gel using (ethylacetate/hexane (1/1) as eluent. The yield of the reaction is of 73%. Crystals were isolated after the solvent (hexane/acetate d'ethyle: 3/2) was allowed to evaporate.

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.93 Å (aromatic), N—H = 0.86 and C—H = 0.97 Å (methylene) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq (C, N).

Structure description top

Substituted imidazopyridines and structurally related compounds are of pharmacological and therapeutical interest. They have been tested for their potential as anticancer (Temple et al., 1987), inotropic (Barraclough et al., 1990), selective antihistamine (H1) agents (Janssens et al., 1985) and antibacterial activity (Liu et al., 2008). Imidazo[4,5-b]pyridine derivatives were also reported as Aurora kinases (Bavetsias et al., 2010), and cyclic PDE inhibitors (Coates et al., 1993).The preparation of these compounds is usually straightforward, and a number of synthetic methods are already available (Ryabukhin et al., 2006; Schiffmann et al., 2006). In this letter, we report the synthesis of 1,3-bis(methyl-1,3-dioxolane)-6- bromo-1,3-dihydroimidazo[4,5-b]pyridin-2-one via the reaction between 6- bromo-1,3-dihydro-imidazo[4,5-b]pyridin-2-one and 2-chloromethyl-1,3- dioxolane in DMF using K2CO3 as base (scheme 1).

The molecule of title compound, 3-benzyl-6-bromo-1,3-dihydro-imidazo [4,5-b]pyridin-2-one, build up from two fused five- and six-membered rings liked on opposite sides to (1,3-dioxolan-2-yl)methyl groups as shown in Fig. 1. The fused rings system (N1N2N3 C1 to C6) is essentially planar with the largest deviation from the mean plane being 0.014 (2) A° at C1 atom. The five-membered ring (O2O3C8C9C10) adopts on C8–O3 a twisted conformation, whereas the other (O4O5C12C13C14) an envelope conformation (on O5), as indicated by the total puckering amplitudes Q2 = 0.355 (3) Å; and Q2 = 0.234 (3) Å and spherical polar angles φ2 = 238.6 (5)° and φ2 = 65.1 (7)°, respectively. The dihedral angles between the fused imidazole and pyridine rings and the two oxolane cycles (O2O3C8C9C10) and (O4O5C12C13C14) are of 82.34 (13) ° and 38.15 (13) °, respectively.

In the crystal, the molecules are linked by C10–H10···O2 hydrogen bond in the way to build a chain parallel to a axis as shown in Fig. 2 and Table 2.

For the biological activity of imidazopyridine derivatives, see: Temple et al. (1987); Barraclough et al. (1990); Janssens et al. (1985); Liu et al. (2008); Bavetsias et al. (2010); Coates et al. (1993); For the chemistry of synthetic dyes, see: Ryabukhin et al. (2006); Schiffmann et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular plot the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Intermolecular interactions in the title compound building a a chain parallel to a axis. Hydrogen bonds are shown as dashed lines.
6-Bromo-1,3-bis[(1,3-dioxolan-2-yl)methyl]-1H-imidazo[4,5-b]pyridin-2(3H)-one top
Crystal data top
C14H16BrN3O5F(000) = 784
Mr = 386.21Dx = 1.717 Mg m3
Monoclinic, P21/nMelting point: 446 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.1144 (1) ÅCell parameters from 4379 reflections
b = 17.8029 (4) Åθ = 2.3–25.5°
c = 16.5365 (5) ŵ = 2.78 mm1
β = 97.009 (2)°T = 296 K
V = 1494.42 (6) Å3Needle, white
Z = 40.15 × 0.07 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
3421 independent reflections
Radiation source: microfocus source2632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 65
Tmin = 0.674, Tmax = 0.936k = 2323
13392 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.089H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.7351P]
where P = (Fo2 + 2Fc2)/3
3421 reflections(Δ/σ)max = 0.010
208 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H16BrN3O5V = 1494.42 (6) Å3
Mr = 386.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.1144 (1) ŵ = 2.78 mm1
b = 17.8029 (4) ÅT = 296 K
c = 16.5365 (5) Å0.15 × 0.07 × 0.02 mm
β = 97.009 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3421 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2632 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.936Rint = 0.027
13392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.02Δρmax = 0.45 e Å3
3421 reflectionsΔρmin = 0.27 e Å3
208 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.05083 (6)0.395344 (15)0.301591 (18)0.05380 (12)
C10.8031 (5)0.32618 (13)0.33438 (15)0.0401 (5)
C20.7746 (5)0.32059 (13)0.41724 (15)0.0412 (5)
H20.87600.34850.45700.049*
C30.5856 (5)0.27082 (12)0.43522 (14)0.0371 (5)
C40.4416 (5)0.23061 (12)0.37221 (14)0.0360 (5)
C50.6557 (5)0.28362 (13)0.27657 (15)0.0419 (6)
H50.68550.28900.22250.050*
C60.2946 (5)0.19654 (13)0.49010 (15)0.0411 (6)
C70.6085 (5)0.26864 (15)0.58864 (15)0.0465 (6)
H7A0.79840.27100.58980.056*
H7B0.56920.22890.62540.056*
C80.5135 (5)0.34154 (15)0.61902 (15)0.0444 (6)
H80.61170.35260.67230.053*
C90.3556 (7)0.45586 (17)0.5782 (2)0.0689 (9)
H9A0.25730.47090.52690.083*
H9B0.43730.50000.60490.083*
C100.1799 (6)0.41836 (17)0.6312 (2)0.0583 (7)
H10A0.21360.43650.68680.070*
H10B0.00390.42690.61110.070*
C110.0926 (5)0.13044 (14)0.36364 (16)0.0432 (6)
H11A0.00730.15350.31650.052*
H11B0.03100.11230.39920.052*
C120.2506 (5)0.06459 (13)0.33618 (16)0.0444 (6)
H120.37250.08290.29930.053*
C130.2579 (7)0.03685 (19)0.4183 (2)0.0718 (10)
H13A0.19870.03420.47180.086*
H13B0.37270.08010.41690.086*
C140.0312 (6)0.04352 (16)0.35507 (17)0.0545 (7)
H14A0.02090.09360.33180.065*
H14B0.13200.03270.37710.065*
N10.4701 (4)0.23447 (11)0.29392 (12)0.0411 (5)
N20.4931 (4)0.24938 (11)0.50679 (12)0.0406 (5)
N30.2652 (4)0.18604 (10)0.40653 (12)0.0395 (5)
O10.1709 (4)0.16624 (10)0.53895 (11)0.0539 (5)
O20.5490 (4)0.40116 (10)0.56540 (12)0.0518 (5)
O30.2459 (4)0.34071 (11)0.62657 (12)0.0572 (5)
O40.3926 (4)0.02910 (10)0.40233 (13)0.0639 (6)
O50.0812 (4)0.01107 (10)0.29556 (11)0.0549 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04950 (18)0.04746 (16)0.0682 (2)0.00250 (12)0.02211 (14)0.00902 (13)
C10.0395 (13)0.0352 (12)0.0480 (14)0.0052 (10)0.0156 (11)0.0052 (10)
C20.0402 (13)0.0381 (12)0.0456 (14)0.0001 (10)0.0061 (11)0.0009 (10)
C30.0411 (13)0.0345 (11)0.0371 (12)0.0033 (10)0.0110 (10)0.0028 (9)
C40.0382 (13)0.0285 (10)0.0421 (13)0.0040 (9)0.0083 (10)0.0012 (9)
C50.0507 (15)0.0361 (12)0.0413 (13)0.0077 (11)0.0154 (11)0.0031 (10)
C60.0449 (14)0.0343 (12)0.0451 (14)0.0067 (10)0.0096 (11)0.0049 (10)
C70.0487 (15)0.0517 (14)0.0390 (13)0.0017 (12)0.0047 (11)0.0042 (11)
C80.0449 (15)0.0550 (15)0.0328 (13)0.0039 (12)0.0031 (11)0.0012 (11)
C90.063 (2)0.0536 (17)0.092 (2)0.0057 (15)0.0180 (18)0.0063 (16)
C100.0472 (16)0.0575 (16)0.071 (2)0.0025 (13)0.0103 (14)0.0145 (15)
C110.0407 (14)0.0414 (12)0.0466 (14)0.0022 (11)0.0016 (11)0.0035 (11)
C120.0479 (15)0.0362 (12)0.0474 (14)0.0016 (11)0.0010 (12)0.0002 (11)
C130.080 (2)0.065 (2)0.066 (2)0.0116 (17)0.0120 (18)0.0195 (16)
C140.0622 (18)0.0474 (15)0.0531 (17)0.0086 (13)0.0031 (14)0.0015 (12)
N10.0492 (12)0.0361 (10)0.0391 (11)0.0042 (9)0.0094 (9)0.0013 (8)
N20.0464 (12)0.0389 (10)0.0377 (11)0.0022 (9)0.0093 (9)0.0011 (9)
N30.0444 (12)0.0328 (10)0.0428 (11)0.0015 (9)0.0110 (9)0.0006 (8)
O10.0597 (12)0.0524 (11)0.0531 (11)0.0068 (9)0.0206 (9)0.0100 (9)
O20.0510 (11)0.0498 (10)0.0568 (11)0.0021 (8)0.0158 (9)0.0048 (9)
O30.0526 (12)0.0514 (11)0.0719 (13)0.0062 (9)0.0248 (10)0.0048 (9)
O40.0615 (13)0.0453 (10)0.0764 (14)0.0050 (9)0.0258 (11)0.0006 (10)
O50.0716 (14)0.0457 (10)0.0431 (10)0.0086 (9)0.0105 (9)0.0016 (8)
Geometric parameters (Å, º) top
Br1—C11.893 (2)C9—O21.422 (4)
C1—C51.371 (4)C9—C101.488 (4)
C1—C21.399 (3)C9—H9A0.9700
C2—C31.370 (3)C9—H9B0.9700
C2—H20.9300C10—O31.427 (3)
C3—N21.381 (3)C10—H10A0.9700
C3—C41.398 (3)C10—H10B0.9700
C4—N11.322 (3)C11—N31.452 (3)
C4—N31.375 (3)C11—C121.524 (4)
C5—N11.347 (3)C11—H11A0.9700
C5—H50.9300C11—H11B0.9700
C6—O11.212 (3)C12—O41.389 (3)
C6—N31.385 (3)C12—O51.403 (3)
C6—N21.387 (3)C12—H120.9800
C7—N21.450 (3)C13—O41.403 (4)
C7—C81.494 (4)C13—C141.469 (4)
C7—H7A0.9700C13—H13A0.9700
C7—H7B0.9700C13—H13B0.9700
C8—O31.389 (3)C14—O51.428 (3)
C8—O21.409 (3)C14—H14A0.9700
C8—H80.9800C14—H14B0.9700
C5—C1—C2121.9 (2)O3—C10—H10B111.0
C5—C1—Br1119.34 (18)C9—C10—H10B111.0
C2—C1—Br1118.71 (19)H10A—C10—H10B109.0
C3—C2—C1114.8 (2)N3—C11—C12110.9 (2)
C3—C2—H2122.6N3—C11—H11A109.5
C1—C2—H2122.6C12—C11—H11A109.5
C2—C3—N2133.6 (2)N3—C11—H11B109.5
C2—C3—C4119.4 (2)C12—C11—H11B109.5
N2—C3—C4107.0 (2)H11A—C11—H11B108.0
N1—C4—N3126.2 (2)O4—C12—O5107.53 (19)
N1—C4—C3126.3 (2)O4—C12—C11111.1 (2)
N3—C4—C3107.5 (2)O5—C12—C11110.3 (2)
N1—C5—C1123.5 (2)O4—C12—H12109.3
N1—C5—H5118.2O5—C12—H12109.3
C1—C5—H5118.2C11—C12—H12109.3
O1—C6—N3127.1 (2)O4—C13—C14107.2 (2)
O1—C6—N2126.8 (2)O4—C13—H13A110.3
N3—C6—N2106.1 (2)C14—C13—H13A110.3
N2—C7—C8114.0 (2)O4—C13—H13B110.3
N2—C7—H7A108.7C14—C13—H13B110.3
C8—C7—H7A108.7H13A—C13—H13B108.5
N2—C7—H7B108.7O5—C14—C13104.1 (2)
C8—C7—H7B108.7O5—C14—H14A110.9
H7A—C7—H7B107.6C13—C14—H14A110.9
O3—C8—O2105.6 (2)O5—C14—H14B110.9
O3—C8—C7112.7 (2)C13—C14—H14B110.9
O2—C8—C7111.7 (2)H14A—C14—H14B109.0
O3—C8—H8108.9C4—N1—C5114.0 (2)
O2—C8—H8108.9C3—N2—C6109.6 (2)
C7—C8—H8108.9C3—N2—C7126.3 (2)
O2—C9—C10105.2 (2)C6—N2—C7123.4 (2)
O2—C9—H9A110.7C4—N3—C6109.7 (2)
C10—C9—H9A110.7C4—N3—C11125.6 (2)
O2—C9—H9B110.7C6—N3—C11124.4 (2)
C10—C9—H9B110.7C8—O2—C9106.0 (2)
H9A—C9—H9B108.8C8—O3—C10103.7 (2)
O3—C10—C9103.8 (2)C12—O4—C13107.9 (2)
O3—C10—H10A111.0C12—O5—C14106.51 (19)
C9—C10—H10A111.0
C5—C1—C2—C31.3 (3)N3—C6—N2—C7171.4 (2)
Br1—C1—C2—C3178.13 (17)C8—C7—N2—C387.4 (3)
C1—C2—C3—N2179.0 (2)C8—C7—N2—C6103.0 (3)
C1—C2—C3—C40.3 (3)N1—C4—N3—C6179.4 (2)
C2—C3—C4—N11.0 (4)C3—C4—N3—C60.4 (3)
N2—C3—C4—N1179.6 (2)N1—C4—N3—C115.4 (4)
C2—C3—C4—N3179.2 (2)C3—C4—N3—C11174.4 (2)
N2—C3—C4—N30.2 (3)O1—C6—N3—C4179.9 (2)
C2—C1—C5—N11.3 (4)N2—C6—N3—C40.4 (3)
Br1—C1—C5—N1178.18 (18)O1—C6—N3—C116.0 (4)
N2—C7—C8—O364.1 (3)N2—C6—N3—C11174.6 (2)
N2—C7—C8—O254.6 (3)C12—C11—N3—C468.0 (3)
O2—C9—C10—O314.6 (3)C12—C11—N3—C6105.2 (3)
N3—C11—C12—O460.3 (3)O3—C8—O2—C931.3 (3)
N3—C11—C12—O5179.4 (2)C7—C8—O2—C9154.1 (2)
O4—C13—C14—O512.2 (4)C10—C9—O2—C89.6 (3)
N3—C4—N1—C5179.2 (2)O2—C8—O3—C1040.7 (3)
C3—C4—N1—C51.1 (3)C7—C8—O3—C10162.9 (2)
C1—C5—N1—C40.0 (3)C9—C10—O3—C833.5 (3)
C2—C3—N2—C6179.4 (3)O5—C12—O4—C1318.7 (3)
C4—C3—N2—C60.1 (3)C11—C12—O4—C13102.1 (3)
C2—C3—N2—C79.8 (4)C14—C13—O4—C123.6 (4)
C4—C3—N2—C7170.9 (2)O4—C12—O5—C1426.6 (3)
O1—C6—N2—C3179.8 (2)C11—C12—O5—C1494.7 (2)
N3—C6—N2—C30.3 (3)C13—C14—O5—C1223.4 (3)
O1—C6—N2—C79.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.972.363.291 (4)160
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H16BrN3O5
Mr386.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.1144 (1), 17.8029 (4), 16.5365 (5)
β (°) 97.009 (2)
V3)1494.42 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.78
Crystal size (mm)0.15 × 0.07 × 0.02
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.674, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
13392, 3421, 2632
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.02
No. of reflections3421
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.972.363.291 (4)160
Symmetry code: (i) x1, y, z.
 

References

First citationBarraclough, P., et al. (1990). J. Med. Chem. 33, 2231–2239.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBavetsias, V., Large, J. M., Sun, C., Bouloc, N., Kosmopoulou, M., Matteucci, M., Wilsher, N. E., Martins, V., Reynisson, J., Atrash, B., Faisal, A., Urban, F., Valenti, M. & Brandon, A. H. (2010). J. Med. Chem. 53, 5213–5228.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoates, W. J., Connolly, B., Dhanak, D., Flynn, S. T. & Worby, A. (1993). J. Med. Chem. 36, 1387–1392.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJanssens, F., Torremans, J., Janssen, M., Stokbroekx, R. A., Luyckx, M. & Janssen, P. A. J. (1985). J. Med. Chem. 28, 1943–1947.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLiu, L., Xu, P., Zhou, L. & Lei, P. S. (2008). Chin. Chem. Lett. 19, 1–4.  Web of Science CrossRef CAS Google Scholar
First citationRyabukhin, S. V., Plaskon, A. S., Volochnyuk, D. M. & Tolmachev, A. A. (2006). Synthesis, 21, 3715–3726.  Google Scholar
First citationSchiffmann, R., Neugebauer, A. & Klein, C. D. (2006). J. Med. Chem. 49, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTemple, J. C., Rose, J. D., Comber, R. N. & Rener, G. A. (1987). J. Med. Chem. 30, 1746–1751.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds