organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,3-Bis(methylsulfanyl)-1-(4-nitrophenyl)prop-2-en-1-one

Guan-Neng Yu,^a Jian-Hui Xia,^a Zhao-Hui Xu,^a Li-Ben Wang^b and Chu-Yi Yu^b*

^aCollege of Chemistry and Chemical Engineering, Jiang Xi Normal University, Nanchang, Jiang Xi 330022, People's Republic of China, and ^bBeijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China Correspondence e-mail: yucy@iccas.ac.cn

Received 16 March 2013; accepted 27 May 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.055; wR factor = 0.115; data-to-parameter ratio = 17.4.

In the title compound, $C_{11}H_{11}NO_3S_2$, the S-Csp² bonds are shorter [1.746 (3) and 1.750 (2) Å] than the $S-CH_3$ bonds [1.794 (3) and 1.806 (3) Å], which we attribute to $d-\pi$ interactions between the S atoms and the C=C bond. The 1.1-bis(methylsulfanyl)-3-oxopropylene fragment and the 4-nitrophenyl group are both almost planar, with the largest deviations from their mean planes being 0.053(1) and 0.017 (2) Å, respectively. The dihedral angle between the two planes is $35.07 (7)^\circ$. Molecules in the crystal are linked into a three-dimensional network by $C-H\cdots S$ and $C-H\cdots O$ hydrogen bonds.

Related literature

For the synthesis of the title compound, see: Huang & Liu (1989). For applications, see: Barun et al. (2000); Kuettel et al. (2007). For general background on ketene aminals, see: Huang & Wang (1994).

 $M_r = 269.33$

Experimental

Crystal data $C_{11}H_{11}NO_3S_2$

a = 7.917 (2) Å b = 8.739 (2) Å c = 9.574 (3) Å $\alpha = 70.415 \ (13)^{\circ}$ $\beta = 81.985 (14)^{\circ}$

Data collection

 $\gamma = 73.283 (13)^{\circ}$

Triclinic, $P\overline{1}$

Rigaku Saturn724+ CCD	7843 measured reflections
diffractometer	2719 independent reflections
Absorption correction: multi-scan	2394 reflections with $I > 2\sigma($
(CrystalClear; Rigaku, 2007)	$R_{\rm int} = 0.053$
$T_{\min} = 0.581, \ T_{\max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	156 parameters
$wR(F^2) = 0.115$	H-atom parameters constrained
S = 1.15	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
2719 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

V = 597.0 (3) Å³ 7 - 2

Mo $K\alpha$ radiation

 $0.27 \times 0.24 \times 0.05 \text{ mm}$

 $\mu = 0.44 \text{ mm}^{-1}$

T = 173 K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C11-H11\cdots S2^{i}$	0.95	2.93	3.614 (3)	130
C8−H8···O3 ⁱⁱ	0.95	2.63	3.204 (3)	119
$C2-H2B\cdots O3^{iii}$	0.98	2.68	3.297 (4)	122
$C10-H10\cdots O1^{iv}$	0.95	2.66	3.602 (3)	171
$C1 - H1C \cdots O1^{v}$	0.98	2.59	3.551 (3)	167
$C7 - H7 \cdots O2^{vi}$	0.95	2.55	3.499 (3)	179
	-			

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 2, -y + 1, -z + 1; (iv) x - 1, y, z; (v) x, y - 1, z; (vi) x + 1, y, z.

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97.

We thank Tongling Liang at the Chinese Academy of Sciences for the X-ray crystallographic structure determination.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2092).

References

Barun, H. O., Ila, H. & Junjappa, H. (2000). J. Org. Chem. 65, 1583-1587. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Huang, Z.-T. & Liu, Z.-R. (1989). Synth. Commun. 19, 943-958.

Huang, Z.-T. & Wang, M.-X. (1994). Heterocycles, 37, 1233-1262.

Kuettel, S., Zambon, A., Kaiser, M., Brun, R., Scapozza, L. & Perozzo, R. (2007). J. Med. Chem. 50, 5833-5839.

Rigaku (2007). CrystalClear. Rigau Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $I > 2\sigma(I)$

supporting information

Acta Cryst. (2013). E69, o1036 [https://doi.org/10.1107/S1600536813014542] 3,3-Bis(methylsulfanyl)-1-(4-nitrophenyl)prop-2-en-1-one

Guan-Neng Yu, Jian-Hui Xia, Zhao-Hui Xu, Li-Ben Wang and Chu-Yi Yu

S1. Comment

Heterocyclic ketene aminals are important and versatile starting materials for the synthesis of a wide variety of fused heterocycles (Huang & Wang, 1994). In this paper, we report the crystal structure of the title compound, which is a precursor of heterocyclic ketene aminals. The shortening of bonds C3—S1 [1.746 (3) Å] and C3—S2 [1.750 (2) Å] with respect to bonds C1—S1 [1.794 (3) Å] and C2—S2 [1.806 (3) Å] is attributed to d- π interactions between sulfur and the C=C bond. The dihedral angle between 4-nitrophenyl group and (C1, C2, S1, S2, C3, C4, C5, O1) is 35.07 (7)°. In the structure of the title compound, molecules are connected through intermolecular C—H···S and C—H···O hydrogen bonding (Table 1) into a three-dimensional network.

S2. Experimental

The title compound was prepared according to the method of Huang & Liu (1989). m.p. 435–437 K. MS: $m/z = 269 (M^+)$. IR: 1615 (C=O), 1590 (C=C), 1512, 1345 (NO₂) cm^{-1. 1}H-NMR: $\delta = 8.33$ (d, 2H), 8.07 (d, 2H), 6.73 (s, 1H), 2.60 (s, 3H), 2.57 (s, 3H) p.p.m.. ¹³C-NMR: $\delta = 183.5$, 170.6, 149.9, 144.9, 129.0, 124.1, 109.0, 17.9, 15.6 p.p.m.. Anal. Calc. for C₁₁H₁₁NO₃S₂: C, 49.05; H, 4.12; N, 5.20. Found C, 49.29; H, 4.23; N, 5.36. Single crystals of the title compound suitable for X-ray diffraction analysis were obtained from ethanol solution by slow evaporation after a week.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 (C1, C3) or 0.95 Å (C6) and with $U_{iso}(H) = 1.5$ times $U_{eq}(C)$ (methyl groups) or with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$ (benzene ring).

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

3,3-Bis(methylsulfanyl)-1-(4-nitrophenyl)prop-2-en-1-one

Crystal data

C₁₁H₁₁NO₃S₂ $M_r = 269.33$ Triclinic, *P*1 a = 7.917 (2) Å b = 8.739 (2) Å c = 9.574 (3) Å a = 70.415 (13)° $\beta = 81.985$ (14)° $\gamma = 73.283$ (13)° V = 597.0 (3) Å³

Data collection

Saturn724+ CCD
diffractometer
Radiation source: sealed tube
Graphite monochromator
ω scans at fixed $\chi = 45^{\circ}$
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
$T_{\min} = 0.581, \ T_{\max} = 1.000$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.115$	neighbouring sites
S = 1.15	H-atom parameters constrained
2719 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0306P)^2 + 0.3933P]$
156 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2

F(000) = 280

 $\theta = 2.3 - 32.6^{\circ}$

 $\mu = 0.44 \text{ mm}^{-1}$

Plate, yellow

 $R_{\rm int} = 0.053$

 $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -12 \rightarrow 12$

 $0.27 \times 0.24 \times 0.05 \text{ mm}$

7843 measured reflections 2719 independent reflections 2394 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$

T = 173 K

 $D_{\rm x} = 1.498 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2392 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	1.24009 (8)	0.08728 (8)	0.14324 (8)	0.03498 (19)
S2	1.38394 (8)	0.37041 (8)	0.12260 (7)	0.03303 (18)
01	1.1193 (2)	0.6171 (2)	0.1933 (2)	0.0386 (4)
O2	0.2086 (2)	0.7642 (3)	0.4617 (2)	0.0429 (5)

supporting information

O3	0.3377 (3)	0.8672 (3)	0.5789 (2)	0.0518 (6)
N1	0.3402 (3)	0.7914 (3)	0.4916 (2)	0.0338 (5)
C1	1.0268 (3)	0.0451 (3)	0.1766 (3)	0.0404 (6)
H1A	0.9467	0.1298	0.1022	0.061*
H1B	0.9799	0.0492	0.2759	0.061*
H1C	1.0375	-0.0668	0.1698	0.061*
C2	1.5600 (3)	0.2069 (4)	0.0782 (3)	0.0398 (6)
H2A	1.5239	0.1753	0.0001	0.060*
H2B	1.5857	0.1086	0.1670	0.060*
H2C	1.6660	0.2481	0.0434	0.060*
C3	1.2001 (3)	0.2871 (3)	0.1613 (3)	0.0280 (5)
C4	1.0404 (3)	0.3722 (3)	0.2043 (3)	0.0297 (5)
H4	0.9447	0.3218	0.2225	0.036*
C5	1.0078 (3)	0.5353 (3)	0.2239 (3)	0.0299 (5)
C6	0.8303 (3)	0.6031 (3)	0.2912 (3)	0.0273 (5)
C7	0.8213 (3)	0.6942 (3)	0.3879 (3)	0.0309 (5)
H7	0.9257	0.7142	0.4083	0.037*
C8	0.6607 (3)	0.7558 (3)	0.4548 (3)	0.0321 (5)
H8	0.6540	0.8155	0.5229	0.038*
C9	0.5109 (3)	0.7280 (3)	0.4199 (3)	0.0280 (5)
C10	0.5143 (3)	0.6403 (3)	0.3229 (3)	0.0300 (5)
H10	0.4088	0.6243	0.3002	0.036*
C11	0.6762 (3)	0.5765 (3)	0.2597 (3)	0.0292 (5)
H11	0.6823	0.5139	0.1941	0.035*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0283 (3)	0.0309 (3)	0.0462 (4)	-0.0060 (3)	0.0047 (3)	-0.0165 (3)
S2	0.0256 (3)	0.0382 (4)	0.0383 (4)	-0.0103 (3)	0.0037 (3)	-0.0160 (3)
01	0.0320 (10)	0.0386 (10)	0.0522 (12)	-0.0155 (8)	0.0104 (8)	-0.0227 (9)
O2	0.0277 (10)	0.0525 (12)	0.0472 (12)	-0.0118 (9)	0.0037 (8)	-0.0150 (10)
03	0.0423 (12)	0.0650 (14)	0.0573 (13)	-0.0078 (10)	0.0109 (10)	-0.0411 (12)
N1	0.0305 (11)	0.0329 (11)	0.0342 (12)	-0.0064 (9)	0.0031 (9)	-0.0090 (10)
C1	0.0329 (14)	0.0321 (13)	0.0599 (18)	-0.0101 (12)	0.0026 (13)	-0.0194 (13)
C2	0.0242 (13)	0.0458 (16)	0.0479 (16)	-0.0069 (12)	0.0054 (11)	-0.0174 (13)
C3	0.0272 (12)	0.0304 (12)	0.0264 (12)	-0.0082 (10)	-0.0004 (9)	-0.0088 (10)
C4	0.0274 (12)	0.0296 (12)	0.0332 (13)	-0.0093 (10)	0.0022 (10)	-0.0108 (11)
C5	0.0295 (12)	0.0326 (13)	0.0303 (13)	-0.0114 (11)	0.0019 (10)	-0.0118 (10)
C6	0.0293 (12)	0.0252 (11)	0.0271 (12)	-0.0077 (10)	0.0005 (9)	-0.0077 (10)
C7	0.0270 (12)	0.0320 (13)	0.0371 (14)	-0.0109 (10)	0.0023 (10)	-0.0139 (11)
C8	0.0357 (14)	0.0327 (13)	0.0323 (13)	-0.0111 (11)	0.0010 (10)	-0.0150 (11)
C9	0.0271 (12)	0.0268 (12)	0.0265 (12)	-0.0052 (10)	0.0027 (9)	-0.0067 (10)
C10	0.0275 (12)	0.0292 (12)	0.0326 (13)	-0.0086 (10)	-0.0031 (10)	-0.0070 (10)
C11	0.0304 (12)	0.0306 (12)	0.0295 (12)	-0.0073 (10)	-0.0016 (10)	-0.0136 (10)

Geometric parameters (Å, °)

S1—C3	1.746 (3)	C3—C4	1.357 (3)
S1—C1	1.794 (3)	C4—C5	1.444 (3)
S2—C3	1.750 (2)	C4—H4	0.9500
S2—C2	1.806 (3)	C5—C6	1.505 (3)
O1—C5	1.236 (3)	C6—C7	1.392 (3)
O2—N1	1.223 (3)	C6—C11	1.395 (3)
O3—N1	1.223 (3)	C7—C8	1.389 (3)
N1—C9	1.473 (3)	С7—Н7	0.9500
C1—H1A	0.9800	C8—C9	1.381 (3)
C1—H1B	0.9800	C8—H8	0.9500
C1—H1C	0.9800	C9—C10	1.381 (3)
C2—H2A	0.9800	C10—C11	1.385 (3)
C2—H2B	0.9800	C10—H10	0.9500
C2—H2C	0.9800	C11—H11	0.9500
C3—S1—C1	104.01 (12)	С5—С4—Н4	118.2
C3—S2—C2	103.83 (12)	O1—C5—C4	123.4 (2)
O2—N1—O3	123.4 (2)	O1—C5—C6	119.3 (2)
O2—N1—C9	118.3 (2)	C4—C5—C6	117.2 (2)
O3—N1—C9	118.3 (2)	C7—C6—C11	119.6 (2)
S1—C1—H1A	109.5	C7—C6—C5	118.6 (2)
S1—C1—H1B	109.5	C11—C6—C5	121.8 (2)
H1A—C1—H1B	109.5	C8—C7—C6	120.4 (2)
S1—C1—H1C	109.5	C8—C7—H7	119.8
H1A—C1—H1C	109.5	С6—С7—Н7	119.8
H1B—C1—H1C	109.5	C9—C8—C7	118.3 (2)
S2—C2—H2A	109.5	C9—C8—H8	120.9
S2—C2—H2B	109.5	C7—C8—H8	120.9
H2A—C2—H2B	109.5	C10—C9—C8	123.0 (2)
S2—C2—H2C	109.5	C10—C9—N1	118.4 (2)
H2A—C2—H2C	109.5	C8—C9—N1	118.6 (2)
H2B—C2—H2C	109.5	C9—C10—C11	118.0 (2)
C4—C3—S1	123.37 (19)	C9—C10—H10	121.0
C4—C3—S2	121.71 (19)	C11—C10—H10	121.0
S1—C3—S2	114.92 (14)	C10—C11—C6	120.8 (2)
C3—C4—C5	123.6 (2)	C10—C11—H11	119.6
C3—C4—H4	118.2	C6—C11—H11	119.6
C1—S1—C3—C4	5.0 (3)	C5—C6—C7—C8	-178.6 (2)
C1—S1—C3—S2	-176.01 (14)	C6—C7—C8—C9	-1.6 (4)
C2—S2—C3—C4	178.0 (2)	C7—C8—C9—C10	0.7 (4)
C2—S2—C3—S1	-0.99 (17)	C7—C8—C9—N1	179.4 (2)
S1—C3—C4—C5	178.02 (19)	O2—N1—C9—C10	-0.3 (3)
S2—C3—C4—C5	-0.9 (4)	O3—N1—C9—C10	179.1 (2)
C3—C4—C5—O1	5.3 (4)	O2—N1—C9—C8	-179.0 (2)
C3—C4—C5—C6	-172.2 (2)	O3—N1—C9—C8	0.4 (3)

supporting information

O1—C5—C6—C7	-34.5 (3)	C8—C9—C10—C11	0.7 (4)
C4—C5—C6—C7	143.0 (2)	N1-C9-C10-C11	-178.0 (2)
O1-C5-C6-C11	145.8 (2)	C9—C10—C11—C6	-1.2 (4)
C4—C5—C6—C11	-36.7 (3)	C7—C6—C11—C10	0.4 (4)
C11—C6—C7—C8	1.1 (4)	C5-C6-C11-C10	-180.0 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
C11—H11····S2 ⁱ	0.95	2.93	3.614 (3)	130
С8—Н8…ОЗіі	0.95	2.63	3.204 (3)	119
C2—H2 <i>B</i> ···O3 ⁱⁱⁱ	0.98	2.68	3.297 (4)	122
C10-H10O1 ^{iv}	0.95	2.66	3.602 (3)	171
C1—H1 <i>C</i> ···O1 ^v	0.98	2.59	3.551 (3)	167
C7—H7…O2 ^{vi}	0.95	2.55	3.499 (3)	179

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) *x*-1, *y*, *z*; (v) *x*, *y*-1, *z*; (vi) *x*+1, *y*, *z*.