supplementary materials


fy2092 scheme

Acta Cryst. (2013). E69, o1036    [ doi:10.1107/S1600536813014542 ]

3,3-Bis(methylsulfanyl)-1-(4-nitrophenyl)prop-2-en-1-one

G.-N. Yu, J.-H. Xia, Z.-H. Xu, L.-B. Wang and C.-Y. Yu

Abstract top

In the title compound, C11H11NO3S2, the S-Csp2 bonds are shorter [1.746 (3) and 1.750 (2) Å] than the S-CH3 bonds [1.794 (3) and 1.806 (3) Å], which we attribute to d-[pi] interactions between the S atoms and the C=C bond. The 1,1-bis(methylsulfanyl)-3-oxopropylene fragment and the 4-nitrophenyl group are both almost planar, with the largest deviations from their mean planes being 0.053 (1) and 0.017 (2) Å, respectively. The dihedral angle between the two planes is 35.07 (7)°. Molecules in the crystal are linked into a three-dimensional network by C-H...S and C-H...O hydrogen bonds.

Comment top

Heterocyclic ketene aminals are important and versatile starting materials for the synthesis of a wide variety of fused heterocycles (Huang & Wang, 1994). In this paper, we report the crystal structure of the title compound, which is a precursor of heterocyclic ketene aminals. The shortening of bonds C3—S1 [1.746 (3) Å] and C3—S2 [1.750 (2) Å] with respect to bonds C1—S1 [1.794 (3) Å] and C2—S2 [1.806 (3) Å] is attributed to d-π interactions between sulfur and the C=C bond. The dihedral angle between 4-nitrophenyl group and (C1, C2, S1, S2, C3, C4, C5, O1) is 35.07 (7)°. In the structure of the title compound, molecules are connected through intermolecular C—H···S and C—H···O hydrogen bonding (Table 1) into a three-dimensional network.

Related literature top

For the synthesis of the title compound, see: Huang & Liu (1989). For applications, see: Barun et al. (2000); Kuettel et al. (2007). For general background on ketene aminals, see: Huang & Wang (1994).

Experimental top

The title compound was prepared according to the method of Huang & Liu (1989). m.p. 435–437 K. MS: m/z = 269 (M+). IR: 1615 (C=O), 1590 (C=C), 1512, 1345 (NO2) cm-1. 1H-NMR: δ = 8.33 (d, 2H), 8.07 (d, 2H), 6.73 (s, lH), 2.60 (s, 3H), 2.57 (s, 3H) p.p.m.. l3C-NMR: δ =183.5, 170.6, 149.9, 144.9, 129.0, 124.1, 109.0, 17.9, 15.6 p.p.m.. Anal. Calc. for C11H11N03S2: C, 49.05; H, 4.12; N, 5.20. Found C, 49.29; H, 4.23; N, 5.36. Single crystals of the title compound suitable for X-ray diffraction analysis were obtained from ethanol solution by slow evaporation after a week.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 (C1, C3) or 0.95 Å (C6) and with Uiso(H) = 1.5 times Ueq(C) (methyl groups) or with Uiso(H) = 1.2 times Ueq(C) (benzene ring).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
3,3-Bis(methylsulfanyl)-1-(4-nitrophenyl)prop-2-en-1-one top
Crystal data top
C11H11NO3S2Z = 2
Mr = 269.33F(000) = 280
Triclinic, P1Dx = 1.498 Mg m3
a = 7.917 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.739 (2) ÅCell parameters from 2392 reflections
c = 9.574 (3) Åθ = 2.3–32.6°
α = 70.415 (13)°µ = 0.44 mm1
β = 81.985 (14)°T = 173 K
γ = 73.283 (13)°Plate, yellow
V = 597.0 (3) Å30.27 × 0.24 × 0.05 mm
Data collection top
Saturn724+ CCD
diffractometer
2719 independent reflections
Radiation source: sealed tube2394 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 1010
Tmin = 0.581, Tmax = 1.000k = 1111
7843 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0306P)2 + 0.3933P]
where P = (Fo2 + 2Fc2)/3
2719 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C11H11NO3S2γ = 73.283 (13)°
Mr = 269.33V = 597.0 (3) Å3
Triclinic, P1Z = 2
a = 7.917 (2) ÅMo Kα radiation
b = 8.739 (2) ŵ = 0.44 mm1
c = 9.574 (3) ÅT = 173 K
α = 70.415 (13)°0.27 × 0.24 × 0.05 mm
β = 81.985 (14)°
Data collection top
Saturn724+ CCD
diffractometer
2719 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
2394 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 1.000Rint = 0.053
7843 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.115Δρmax = 0.29 e Å3
S = 1.15Δρmin = 0.23 e Å3
2719 reflectionsAbsolute structure: ?
156 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.24009 (8)0.08728 (8)0.14324 (8)0.03498 (19)
S21.38394 (8)0.37041 (8)0.12260 (7)0.03303 (18)
O11.1193 (2)0.6171 (2)0.1933 (2)0.0386 (4)
O20.2086 (2)0.7642 (3)0.4617 (2)0.0429 (5)
O30.3377 (3)0.8672 (3)0.5789 (2)0.0518 (6)
N10.3402 (3)0.7914 (3)0.4916 (2)0.0338 (5)
C11.0268 (3)0.0451 (3)0.1766 (3)0.0404 (6)
H1A0.94670.12980.10220.061*
H1B0.97990.04920.27590.061*
H1C1.03750.06680.16980.061*
C21.5600 (3)0.2069 (4)0.0782 (3)0.0398 (6)
H2A1.52390.17530.00010.060*
H2B1.58570.10860.16700.060*
H2C1.66600.24810.04340.060*
C31.2001 (3)0.2871 (3)0.1613 (3)0.0280 (5)
C41.0404 (3)0.3722 (3)0.2043 (3)0.0297 (5)
H40.94470.32180.22250.036*
C51.0078 (3)0.5353 (3)0.2239 (3)0.0299 (5)
C60.8303 (3)0.6031 (3)0.2912 (3)0.0273 (5)
C70.8213 (3)0.6942 (3)0.3879 (3)0.0309 (5)
H70.92570.71420.40830.037*
C80.6607 (3)0.7558 (3)0.4548 (3)0.0321 (5)
H80.65400.81550.52290.038*
C90.5109 (3)0.7280 (3)0.4199 (3)0.0280 (5)
C100.5143 (3)0.6403 (3)0.3229 (3)0.0300 (5)
H100.40880.62430.30020.036*
C110.6762 (3)0.5765 (3)0.2597 (3)0.0292 (5)
H110.68230.51390.19410.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0283 (3)0.0309 (3)0.0462 (4)0.0060 (3)0.0047 (3)0.0165 (3)
S20.0256 (3)0.0382 (4)0.0383 (4)0.0103 (3)0.0037 (3)0.0160 (3)
O10.0320 (10)0.0386 (10)0.0522 (12)0.0155 (8)0.0104 (8)0.0227 (9)
O20.0277 (10)0.0525 (12)0.0472 (12)0.0118 (9)0.0037 (8)0.0150 (10)
O30.0423 (12)0.0650 (14)0.0573 (13)0.0078 (10)0.0109 (10)0.0411 (12)
N10.0305 (11)0.0329 (11)0.0342 (12)0.0064 (9)0.0031 (9)0.0090 (10)
C10.0329 (14)0.0321 (13)0.0599 (18)0.0101 (12)0.0026 (13)0.0194 (13)
C20.0242 (13)0.0458 (16)0.0479 (16)0.0069 (12)0.0054 (11)0.0174 (13)
C30.0272 (12)0.0304 (12)0.0264 (12)0.0082 (10)0.0004 (9)0.0088 (10)
C40.0274 (12)0.0296 (12)0.0332 (13)0.0093 (10)0.0022 (10)0.0108 (11)
C50.0295 (12)0.0326 (13)0.0303 (13)0.0114 (11)0.0019 (10)0.0118 (10)
C60.0293 (12)0.0252 (11)0.0271 (12)0.0077 (10)0.0005 (9)0.0077 (10)
C70.0270 (12)0.0320 (13)0.0371 (14)0.0109 (10)0.0023 (10)0.0139 (11)
C80.0357 (14)0.0327 (13)0.0323 (13)0.0111 (11)0.0010 (10)0.0150 (11)
C90.0271 (12)0.0268 (12)0.0265 (12)0.0052 (10)0.0027 (9)0.0067 (10)
C100.0275 (12)0.0292 (12)0.0326 (13)0.0086 (10)0.0031 (10)0.0070 (10)
C110.0304 (12)0.0306 (12)0.0295 (12)0.0073 (10)0.0016 (10)0.0136 (10)
Geometric parameters (Å, º) top
S1—C31.746 (3)C3—C41.357 (3)
S1—C11.794 (3)C4—C51.444 (3)
S2—C31.750 (2)C4—H40.9500
S2—C21.806 (3)C5—C61.505 (3)
O1—C51.236 (3)C6—C71.392 (3)
O2—N11.223 (3)C6—C111.395 (3)
O3—N11.223 (3)C7—C81.389 (3)
N1—C91.473 (3)C7—H70.9500
C1—H1A0.9800C8—C91.381 (3)
C1—H1B0.9800C8—H80.9500
C1—H1C0.9800C9—C101.381 (3)
C2—H2A0.9800C10—C111.385 (3)
C2—H2B0.9800C10—H100.9500
C2—H2C0.9800C11—H110.9500
C3—S1—C1104.01 (12)C5—C4—H4118.2
C3—S2—C2103.83 (12)O1—C5—C4123.4 (2)
O2—N1—O3123.4 (2)O1—C5—C6119.3 (2)
O2—N1—C9118.3 (2)C4—C5—C6117.2 (2)
O3—N1—C9118.3 (2)C7—C6—C11119.6 (2)
S1—C1—H1A109.5C7—C6—C5118.6 (2)
S1—C1—H1B109.5C11—C6—C5121.8 (2)
H1A—C1—H1B109.5C8—C7—C6120.4 (2)
S1—C1—H1C109.5C8—C7—H7119.8
H1A—C1—H1C109.5C6—C7—H7119.8
H1B—C1—H1C109.5C9—C8—C7118.3 (2)
S2—C2—H2A109.5C9—C8—H8120.9
S2—C2—H2B109.5C7—C8—H8120.9
H2A—C2—H2B109.5C10—C9—C8123.0 (2)
S2—C2—H2C109.5C10—C9—N1118.4 (2)
H2A—C2—H2C109.5C8—C9—N1118.6 (2)
H2B—C2—H2C109.5C9—C10—C11118.0 (2)
C4—C3—S1123.37 (19)C9—C10—H10121.0
C4—C3—S2121.71 (19)C11—C10—H10121.0
S1—C3—S2114.92 (14)C10—C11—C6120.8 (2)
C3—C4—C5123.6 (2)C10—C11—H11119.6
C3—C4—H4118.2C6—C11—H11119.6
C1—S1—C3—C45.0 (3)C5—C6—C7—C8178.6 (2)
C1—S1—C3—S2176.01 (14)C6—C7—C8—C91.6 (4)
C2—S2—C3—C4178.0 (2)C7—C8—C9—C100.7 (4)
C2—S2—C3—S10.99 (17)C7—C8—C9—N1179.4 (2)
S1—C3—C4—C5178.02 (19)O2—N1—C9—C100.3 (3)
S2—C3—C4—C50.9 (4)O3—N1—C9—C10179.1 (2)
C3—C4—C5—O15.3 (4)O2—N1—C9—C8179.0 (2)
C3—C4—C5—C6172.2 (2)O3—N1—C9—C80.4 (3)
O1—C5—C6—C734.5 (3)C8—C9—C10—C110.7 (4)
C4—C5—C6—C7143.0 (2)N1—C9—C10—C11178.0 (2)
O1—C5—C6—C11145.8 (2)C9—C10—C11—C61.2 (4)
C4—C5—C6—C1136.7 (3)C7—C6—C11—C100.4 (4)
C11—C6—C7—C81.1 (4)C5—C6—C11—C10180.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···S2i0.952.933.614 (3)130
C8—H8···O3ii0.952.633.204 (3)119
C2—H2B···O3iii0.982.683.297 (4)122
C10—H10···O1iv0.952.663.602 (3)171
C1—H1C···O1v0.982.593.551 (3)167
C7—H7···O2vi0.952.553.499 (3)179
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+2, z+1; (iii) x+2, y+1, z+1; (iv) x1, y, z; (v) x, y1, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H11NO3S2
Mr269.33
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.917 (2), 8.739 (2), 9.574 (3)
α, β, γ (°)70.415 (13), 81.985 (14), 73.283 (13)
V3)597.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.27 × 0.24 × 0.05
Data collection
DiffractometerSaturn724+ CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.581, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7843, 2719, 2394
Rint0.053
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.115, 1.15
No. of reflections2719
No. of parameters156
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.23

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···S2i0.952.933.614 (3)130.0
C8—H8···O3ii0.952.633.204 (3)119.4
C2—H2B···O3iii0.982.683.297 (4)121.6
C10—H10···O1iv0.952.663.602 (3)170.5
C1—H1C···O1v0.982.593.551 (3)167.4
C7—H7···O2vi0.952.553.499 (3)179.1
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+2, z+1; (iii) x+2, y+1, z+1; (iv) x1, y, z; (v) x, y1, z; (vi) x+1, y, z.
Acknowledgements top

We thank Tongling Liang at the Chinese Academy of Sciences for the X-ray crystallographic structure determination.

references
References top

Barun, H. O., Ila, H. & Junjappa, H. (2000). J. Org. Chem. 65, 1583–1587.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Huang, Z.-T. & Liu, Z.-R. (1989). Synth. Commun. 19, 943–958.

Huang, Z.-T. & Wang, M.-X. (1994). Heterocycles, 37, 1233–1262.

Kuettel, S., Zambon, A., Kaiser, M., Brun, R., Scapozza, L. & Perozzo, R. (2007). J. Med. Chem. 50, 5833–5839.

Rigaku (2007). CrystalClear. Rigau Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.